Orphan Gene
   HOME
*





Orphan Gene
Orphan genes, ORFans, or taxonomically restricted genes (TRGs) are genes that lack a detectable homologue outside of a given species or lineage. Most genes have known homologues. Two genes are homologous when they share an evolutionary history, and the study of groups of homologous genes allows for an understanding of their evolutionary history and divergence. Common mechanisms that have been uncovered as sources for new genes through studies of homologues include gene duplication, exon shuffling, gene fusion and fission, etc. Studying the origins of a gene becomes more difficult when there is no evident homologue. The discovery that about 10% or more of the genes of the average microbial species is constituted by orphan genes raises questions about the evolutionary origins of different species as well as how to study and uncover the evolutionary origins of orphan genes. In some cases, a gene can be classified as an orphan gene due to undersampling of the existing genome space. W ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Open Reading Frame
In molecular biology, open reading frames (ORFs) are defined as spans of DNA sequence between the start and stop codons. Usually, this is considered within a studied region of a prokaryotic DNA sequence, where only one of the six possible reading frames will be "open" (the "reading", however, refers to the RNA produced by transcription of the DNA and its subsequent interaction with the ribosome in translation). Such an ORF may contain a start codon (usually AUG in terms of RNA) and by definition cannot extend beyond a stop codon (usually UAA, UAG or UGA in RNA). That start codon (not necessarily the first) indicates where translation may start. The transcription termination site is located after the ORF, beyond the translation stop codon. If transcription were to cease before the stop codon, an incomplete protein would be made during translation. In eukaryotic genes with multiple exons, introns are removed and exons are then joined together after transcription to yield the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Genes
In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a basic unit of heredity and the molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protein-coding genes and noncoding genes. During gene expression, the DNA is first copied into RNA. The RNA can be directly functional or be the intermediate template for a protein that performs a function. The transmission of genes to an organism's offspring is the basis of the inheritance of phenotypic traits. These genes make up different DNA sequences called genotypes. Genotypes along with environmental and developmental factors determine what the phenotypes will be. Most biological traits are under the influence of polygenes (many different genes) as well as gene ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homology (biology)
In biology, homology is similarity due to shared ancestry between a pair of structures or genes in different taxa. A common example of homologous structures is the forelimbs of vertebrates, where the wings of bats and birds, the arms of primates, the front flippers of whales and the forelegs of four-legged vertebrates like dogs and crocodiles are all derived from the same ancestral tetrapod structure. Evolutionary biology explains homologous structures adapted to different purposes as the result of descent with modification from a common ancestor. The term was first applied to biology in a non-evolutionary context by the anatomist Richard Owen in 1843. Homology was later explained by Charles Darwin's theory of evolution in 1859, but had been observed before this, from Aristotle onwards, and it was explicitly analysed by Pierre Belon in 1555. In developmental biology, organs that developed in the embryo in the same manner and from similar origins, such as from matching prim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gene Duplication
Gene duplication (or chromosomal duplication or gene amplification) is a major mechanism through which new genetic material is generated during molecular evolution. It can be defined as any duplication of a region of DNA that contains a gene. Gene duplications can arise as products of several types of errors in DNA replication and repair machinery as well as through fortuitous capture by selfish genetic elements. Common sources of gene duplications include ectopic recombination, retrotransposition event, aneuploidy, polyploidy, and replication slippage. Mechanisms of duplication Ectopic recombination Duplications arise from an event termed unequal crossing-over that occurs during meiosis between misaligned homologous chromosomes. The chance of it happening is a function of the degree of sharing of repetitive elements between two chromosomes. The products of this recombination are a duplication at the site of the exchange and a reciprocal deletion. Ectopic recombination ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Exon Shuffling
Exon shuffling is a molecular mechanism for the formation of new genes. It is a process through which two or more exons from different genes can be brought together ectopically, or the same exon can be duplicated, to create a new exon-intron structure. There are different mechanisms through which exon shuffling occurs: transposon mediated exon shuffling, crossover during sexual recombination of parental genomes and illegitimate recombination. Exon shuffling follows certain splice frame rules. Introns can interrupt the reading frame of a gene by inserting a sequence between two consecutive codons (phase 0 introns), between the first and second nucleotide of a codon (phase 1 introns), or between the second and third nucleotide of a codon (phase 2 introns). Additionally exons can be classified into nine different groups based on the phase of the flanking introns (symmetrical: 0-0, 1-1, 2-2 and asymmetrical: 0–1, 0–2, 1–0, 1–2, etc.) Symmetric exons are the only ones that c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fusion Gene
A fusion gene is a hybrid gene formed from two previously independent genes. It can occur as a result of translocation, interstitial deletion, or chromosomal inversion. Fusion genes have been found to be prevalent in all main types of human neoplasia. The identification of these fusion genes play a prominent role in being a diagnostic and prognostic marker. History The first fusion gene was described in cancer cells in the early 1980s. The finding was based on the discovery in 1960 by Peter Nowell and David Hungerford in Philadelphia of a small abnormal marker chromosome in patients with chronic myeloid leukemia—the first consistent chromosome abnormality detected in a human malignancy, later designated the Philadelphia chromosome. In 1973, Janet Rowley in Chicago showed that the Philadelphia chromosome had originated through a translocation between chromosomes 9 and 22, and not through a simple deletion of chromosome 22 as was previously thought. Several investigators in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


De Novo Gene Birth
''De novo'' gene birth is the process by which new genes evolve from DNA sequences that were ancestrally non-genic. '' De novo'' genes represent a subset of novel genes, and may be protein-coding or instead act as RNA genes. The processes that govern ''de novo'' gene birth are not well understood, although several models exist that describe possible mechanisms by which ''de novo'' gene birth may occur. Although ''de novo'' gene birth may have occurred at any point in an organism's evolutionary history, ancient ''de novo'' gene birth events are difficult to detect. Most studies of ''de novo'' genes to date have thus focused on young genes, typically taxonomically restricted genes (TRGs) that are present in a single species or lineage, including so-called orphan genes, defined as genes that lack any identifiable homolog. It is important to note, however, that not all orphan genes arise ''de novo'', and instead may emerge through fairly well characterized mechanisms such as gene ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Caenorhabditis Briggsae
''Caenorhabditis briggsae'' is a small nematode, closely related to ''Caenorhabditis elegans''. The differences between the two species are subtle. The male tail in ''C. briggsae'' has a slightly different morphology from ''C. elegans''. Other differences include changes in vulval precursor competence and the placement of the excretory duct opening. ''C. briggsae'' is frequently used to study the differences between it and the more intimately understood ''C. elegans'', especially at the DNA and protein sequence level. Several mutant strains of ''C. briggsae'' have also been isolated that facilitate genetic analysis of this organism. ''C. briggsae'', like ''C. elegans'', is a hermaphrodite. The genome sequence for ''C. briggsae'' was determined in 2003. History ''C. briggsae'' was initially discovered by Margaret Briggs in 1944. The first individuals were isolated from a pile of leaves found on the Palo Alto campus of Stanford University. Briggs, who was studying for her MS, id ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Phylostratum
Phylostratum is a set of genes from an organism that coalesce to founder genes having common phylogenetic In biology, phylogenetics (; from Greek φυλή/ φῦλον [] "tribe, clan, race", and wikt:γενετικός, γενετικός [] "origin, source, birth") is the study of the evolutionary history and relationships among or within groups o ... origin. References Genetics {{genetics-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nathan H
Nathan or Natan may refer to: People * Nathan (given name), including a list of people and characters with this name * Nathan (surname) *Nathan (prophet), a person in the Hebrew Bible *Nathan (son of David), biblical figure, son of King David and Bathsheba * Nathan of Gaza, a charismatic figure who spread the word of Eli the Prophet * Starboy Nathan, a British singer who used the stage name "Nathan" from 2006 to 2011 * Nathan (footballer, born 1994), full name ''Nathan Athaydes Campos Ferreira'', Brazilian winger *Nathan (footballer, born 1995), full name ''Nathan Raphael Pelae Cardoso'', Brazilian centre back * Nathan (footballer, born 1996), full name ''Nathan Allan de Souza'', Brazilian midfielder * Nathan (footballer, born May 1999), full name ''Nathan Crepaldi da Cruz'', Brazilian forward * Nathan (footballer, born August 1999), full name ''Nathan Palafoz de Sousa'', Brazilian forward Other uses * Nathan, Queensland, a suburb of Brisbane in Australia * Nathan (band), an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

MicroRNA
MicroRNA (miRNA) are small, single-stranded, non-coding RNA molecules containing 21 to 23 nucleotides. Found in plants, animals and some viruses, miRNAs are involved in RNA silencing and post-transcriptional regulation of gene expression. miRNAs base-pair to complementary sequences in mRNA molecules, then gene silence said mRNA molecules by one or more of the following processes: (1) cleavage of mRNA strand into two pieces, (2) destabilization of mRNA by shortening its poly(A) tail, or (3) translation of mRNA into proteins. This last method of gene silencing is the least efficient of the three, and requires the aid of ribosomes. miRNAs resemble the small interfering RNAs (siRNAs) of the RNA interference (RNAi) pathway, except miRNAs derive from regions of RNA transcripts that fold back on themselves to form short hairpins, whereas siRNAs derive from longer regions of double-stranded RNA. The human genome may encode over 1900 miRNAs, although more recent analysis sugges ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Human Chromosome 21
Chromosome 21 is one of the 23 pairs of chromosomes in humans. Chromosome 21 is both the smallest human autosome and chromosome, with 48 million base pairs (the building material of DNA) representing about 1.5 percent of the total DNA in cells. Most people have two copies of chromosome 21, while those with three copies of chromosome 21 have Down syndrome, also called "trisomy 21". Researchers working on the Human Genome Project announced in May 2000 that they had determined the sequence of base pairs that make up this chromosome. Chromosome 21 was the second human chromosome to be fully sequenced, after chromosome 22. Genes Number of genes The following are some of the gene count estimates of human chromosome 21. Because researchers use different approaches to genome annotation their predictions of the number of genes on each chromosome varies (for technical details, see gene prediction). Among various projects, the collaborative consensus coding sequence project ( CCDS) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]