Orientation Sheaf
   HOME
*





Orientation Sheaf
In the mathematical field of algebraic topology, the orientation sheaf on a manifold ''X'' of dimension ''n'' is a locally constant sheaf ''o''''X'' on ''X'' such that the stalk of ''o''''X'' at a point ''x'' is :o_ = \operatorname_n(X, X - \) (in the integer coefficients or some other coefficients). Let \Omega^k_M be the sheaf of differential ''k''-forms on a manifold ''M''. If ''n'' is the dimension of ''M'', then the sheaf :\mathcal_M = \Omega^n_M \otimes \mathcal_M is called the sheaf of (smooth) densities on ''M''. The point of this is that, while one can integrate a differential form only if the manifold is oriented, one can always integrate a density, regardless of orientation or orientability; there is the integration map: :\textstyle \int_M: \Gamma_c(M, \mathcal_M) \to \mathbb. If ''M'' is oriented; i.e., the orientation sheaf of the tangent bundle of ''M'' is literally trivial, then the above reduces to the usual integration of a differential form. See also * Orientati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up to homeomorphism, though usually most classify up to Homotopy#Homotopy equivalence and null-homotopy, homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches of algebraic topology Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy gro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Locally Constant Sheaf
In algebraic topology, a locally constant sheaf on a topological space ''X'' is a sheaf \mathcal on ''X'' such that for each ''x'' in ''X'', there is an open neighborhood ''U'' of ''x'' such that the restriction \mathcal, _U is a constant sheaf on ''U''. It is also called a local system. When ''X'' is a stratified space, a constructible sheaf is roughly a sheaf that is locally constant on each member of the stratification. A basic example is the orientation sheaf on a manifold since each point of the manifold admits an ''orientable'' open neighborhood (while the manifold itself may not be orientable.) For another example, let X = \mathbb, \mathcal_X be the sheaf of holomorphic functions on ''X'' and P: \mathcal_X \to \mathcal_X given by P = z - . Then the kernel of ''P'' is a locally constant sheaf on X - \ but not constant there (since it has no nonzero global section). If \mathcal is a locally constant sheaf of sets on a space ''X'', then each path p: , 1\to X in ''X'' determi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differential Form
In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics. For instance, the expression is an example of a -form, and can be integrated over an interval contained in the domain of : :\int_a^b f(x)\,dx. Similarly, the expression is a -form that can be integrated over a surface : :\int_S (f(x,y,z)\,dx\wedge dy + g(x,y,z)\,dz\wedge dx + h(x,y,z)\,dy\wedge dz). The symbol denotes the exterior product, sometimes called the ''wedge product'', of two differential forms. Likewise, a -form represents a volume element that can be integrated over a region of space. In general, a -form is an object that may be integrated over a -dimensional manifold, and is homogeneous of degree in the coordinate differentials dx, dy, \ldots. On an -dimensional manifold, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integration Of A Differential Form
In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics. For instance, the expression is an example of a -form, and can be integrated over an interval contained in the domain of : :\int_a^b f(x)\,dx. Similarly, the expression is a -form that can be integrated over a surface : :\int_S (f(x,y,z)\,dx\wedge dy + g(x,y,z)\,dz\wedge dx + h(x,y,z)\,dy\wedge dz). The symbol denotes the exterior product, sometimes called the ''wedge product'', of two differential forms. Likewise, a -form represents a volume element that can be integrated over a region of space. In general, a -form is an object that may be integrated over a -dimensional manifold, and is homogeneous of degree in the coordinate differentials dx, dy, \ldots. On an -dimensional manifold, t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orientation Of A Manifold
In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space is orientable if such a consistent definition exists. In this case, there are two possible definitions, and a choice between them is an orientation of the space. Real vector spaces, Euclidean spaces, and spheres are orientable. A space is non-orientable if "clockwise" is changed into "counterclockwise" after running through some loops in it, and coming back to the starting point. This means that a geometric shape, such as , that moves continuously along such a loop is changed into its own mirror image . A Möbius strip is an example of a non-orientable space. Various equivalent formulations of orientability can be given, depending on the desired application and level of generality. Formulations applicable to general topological manifolds ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Verdier Duality
In mathematics, Verdier duality is a cohomology, cohomological duality in algebraic topology that generalizes Poincaré duality for manifolds. Verdier duality was introduced in 1965 by as an analog for locally compact space, locally compact topological spaces of Alexander Grothendieck's theory of Étale cohomology#Poincaré duality and cohomology with compact support, Poincaré duality in étale cohomology for scheme (mathematics), schemes in algebraic geometry. It is thus (together with the said étale theory and for example Grothendieck's coherent duality) one instance of Grothendieck's six operations formalism. Verdier duality generalises the classical Poincaré duality of manifolds in two directions: it applies to continuous maps from one space to another (reducing to the classical case for the unique map from a manifold to a one-point space), and it applies to spaces that fail to be manifolds due to the presence of singularities. It is commonly encountered when studying const ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up to homeomorphism, though usually most classify up to Homotopy#Homotopy equivalence and null-homotopy, homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches of algebraic topology Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy gro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]