Octic Reciprocity Law
   HOME
*





Octic Reciprocity Law
In number theory, octic reciprocity is a reciprocity law In mathematics, a reciprocity law is a generalization of the law of quadratic reciprocity to arbitrary monic irreducible polynomials f(x) with integer coefficients. Recall that first reciprocity law, quadratic reciprocity, determines when an irr ... relating the residues of 8th powers modular arithmetic, modulo prime number, primes, analogous to the law of quadratic reciprocity, cubic reciprocity, and quartic reciprocity. There is a rational reciprocity law for 8th powers, due to Williams. Define the symbol \left(\frac xp\right)_k to be +1 if ''x'' is a ''k''-th power modulo the prime ''p'' and -1 otherwise. Let ''p'' and ''q'' be distinct primes congruent to 1 modulo 8, such that \left(\frac pq\right)_4 = \left(\frac qp\right)_4 = +1 . Let ''p'' = ''a''2 + ''b''2 = ''c''2 + 2''d''2 and ''q'' = ''A''2 + ''B''2 = ''C''2 + 2''D''2, with ''aA'' odd. Then : \left(\frac pq\right)_8 \left(\frac qp\right)_8 = \left(\fracq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."German original: "Die Mathematik ist die Königin der Wissenschaften, und die Arithmetik ist die Königin der Mathematik." Number theorists study prime numbers as well as the properties of mathematical objects made out of integers (for example, rational numbers) or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory are often best understood through the study of Complex analysis, analytical objects (for example, the Riemann zeta function) that encode properties of the integers, primes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reciprocity Law
In mathematics, a reciprocity law is a generalization of the law of quadratic reciprocity to arbitrary monic irreducible polynomials f(x) with integer coefficients. Recall that first reciprocity law, quadratic reciprocity, determines when an irreducible polynomial f(x) = x^2 + ax + b splits into linear terms when reduced mod p. That is, it determines for which prime numbers the relationf(x) \equiv f_p(x) = (x-n_p)(x-m_p) \text (\text p)holds. For a general reciprocity lawpg 3, it is defined as the rule determining which primes p the polynomial f_p splits into linear factors, denoted \text\. There are several different ways to express reciprocity laws. The early reciprocity laws found in the 19th century were usually expressed in terms of a power residue symbol (''p''/''q'') generalizing the quadratic reciprocity symbol, that describes when a prime number is an ''n''th power residue modulo another prime, and gave a relation between (''p''/''q'') and (''q''/''p''). Hilbert refo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modular Arithmetic
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book ''Disquisitiones Arithmeticae'', published in 1801. A familiar use of modular arithmetic is in the 12-hour clock, in which the day is divided into two 12-hour periods. If the time is 7:00 now, then 8 hours later it will be 3:00. Simple addition would result in , but clocks "wrap around" every 12 hours. Because the hour number starts over at zero when it reaches 12, this is arithmetic ''modulo'' 12. In terms of the definition below, 15 is ''congruent'' to 3 modulo 12, so "15:00" on a 24-hour clock is displayed "3:00" on a 12-hour clock. Congruence Given an integer , called a modulus, two integers and are said to be congruent modulo , if is a divisor of their difference (that is, if there is an integer such that ). Congruence modulo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number n, called trial division, tests whether n is a multiple of any integer between 2 and \sqrt. Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which always pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Law Of Quadratic Reciprocity
In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. Due to its subtlety, it has many formulations, but the most standard statement is: This law, together with its supplements, allows the easy calculation of any Legendre symbol, making it possible to determine whether there is an integer solution for any quadratic equation of the form x^2\equiv a \bmod p for an odd prime p; that is, to determine the "perfect squares" modulo p. However, this is a non-constructive result: it gives no help at all for finding a ''specific'' solution; for this, other methods are required. For example, in the case p\equiv 3 \bmod 4 using Euler's criterion one can give an explicit formula for the "square roots" modulo p of a quadratic residue a, namely, :\pm a^ indeed, :\left (\pm a^ \right )^2=a^=a\cdot a^\equiv a\left(\frac\right)=a \bmod p. This formula only works if it is k ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cubic Reciprocity
Cubic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence ''x''3 ≡ ''p'' (mod ''q'') is solvable; the word "reciprocity" comes from the form of the main theorem, which states that if ''p'' and ''q'' are primary numbers in the ring of Eisenstein integers, both coprime to 3, the congruence ''x''3 ≡ ''p'' (mod ''q'') is solvable if and only if ''x''3 ≡ ''q'' (mod ''p'') is solvable. History Sometime before 1748 Euler made the first conjectures about the cubic residuacity of small integers, but they were not published until 1849, after his death. Gauss's published works mention cubic residues and reciprocity three times: there is one result pertaining to cubic residues in the Disquisitiones Arithmeticae (1801). In the introduction to the fifth and sixth proofs of quadratic reciprocity (1818) he said that he was publishing these proofs because their techniques ( Gauss's lemma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quartic Reciprocity
Quartic or biquadratic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence ''x''4 ≡ ''p'' (mod ''q'') is solvable; the word "reciprocity" comes from the form of some of these theorems, in that they relate the solvability of the congruence ''x''4 ≡ ''p'' (mod ''q'') to that of ''x''4 ≡ ''q'' (mod ''p''). History Euler made the first conjectures about biquadratic reciprocity. Gauss published two monographs on biquadratic reciprocity. In the first one (1828) he proved Euler's conjecture about the biquadratic character of 2. In the second one (1832) he stated the biquadratic reciprocity law for the Gaussian integers and proved the supplementary formulas. He saidGauss, BQ, § 67 that a third monograph would be forthcoming with the proof of the general theorem, but it never appeared. Jacobi presented proofs in his Königsberg lectures of 1836–37. The first published proofs were by Eise ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Rational Reciprocity Law
In number theory, a rational reciprocity law is a reciprocity law involving residue symbols that are related by a factor of +1 or –1 rather than a general root of unity. As an example, there are rational biquadratic In algebra, a quartic function is a function of the form :f(x)=ax^4+bx^3+cx^2+dx+e, where ''a'' is nonzero, which is defined by a polynomial of degree four, called a quartic polynomial. A ''quartic equation'', or equation of the fourth degre ... and octic reciprocity laws. Define the symbol (''x'', ''p'')''k'' to be +1 if ''x'' is a ''k''-th power modulo the prime ''p'' and -1 otherwise. Let ''p'' and ''q'' be distinct primes congruent to 1 modulo 4, such that (''p'', ''q'')2 = (''q'', ''p'')2 = +1. Let ''p'' = ''a''2 + ''b''2 and ''q'' = ''A''2 + ''B''2 with ''aA'' odd. Then : (p, q)_4 (q, p)_4 = (-1)^ (aB-bA, q)_2 \ . If in addition ''p'' and ''q'' are congruent to 1 modulo 8, let ''p'' = ''c''2 + 2''d''2 and ''q'' = ''C''2 + 2''D''2. Then : (p, q)_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Artin Reciprocity
Artin may refer to: * Artin (name), a surname and given name, including a list of people with the name ** Artin, a variant of Harutyun Harutyun ( hy, Հարություն and in Western Armenian Յարութիւն) also spelled Haroutioun, Harutiun and its variants Harout, Harut and Artin is a common male Armenian name; it means resurrection in Armenian. People with the name H ..., an Armenian given name * 15378 Artin, a main-belt asteroid See also

{{disambiguation, surname ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eisenstein Reciprocity
In algebraic number theory Eisenstein's reciprocity law is a reciprocity law that extends the law of quadratic reciprocity and the cubic reciprocity law to residues of higher powers. It is one of the earliest and simplest of the higher reciprocity laws, and is a consequence of several later and stronger reciprocity laws such as the Artin reciprocity law. It was introduced by , though Jacobi had previously announced (without proof) a similar result for the special cases of 5th, 8th and 12th powers in 1839. Background and notation Let  m > 1 be an integer, and let   \mathcal_m  be the ring of integers of the ''m''-th cyclotomic field   \mathbb(\zeta_m),  where  \zeta_m=e^  is a primitive ''m''-th root of unity. The numbers \zeta_m, \zeta_m^2,\dots\zeta_m^m=1 are units in \mathcal_m. (There are other units as well.) Primary numbers A number \alpha\in\mathcal_m is called primary if it is not a unit, is relatively prime to m, and is congruent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pacific Journal Of Mathematics
The Pacific Journal of Mathematics is a mathematics research journal supported by several universities and research institutes, and currently published on their behalf by Mathematical Sciences Publishers, a non-profit academic publishing organisation, and the University of California, Berkeley. It was founded in 1951 by František Wolf and Edwin F. Beckenbach and has been published continuously since, with five two-issue volumes per year and 12 issues per year. Full-text PDF versions of all journal articles are available on-line via the journal's website with a subscription. The journal is incorporated as a 501(c)(3) organization. References

Mathematics journals Publications established in 1951 Mathematical Sciences Publishers academic journals {{math-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]