Oriented Line
The orientation of a real vector space or simply orientation of a vector space is the arbitrary choice of which ordered bases are "positively" oriented and which are "negatively" oriented. In the three-dimensional Euclidean space, right-handed bases are typically declared to be positively oriented, but the choice is arbitrary, as they may also be assigned a negative orientation. A vector space with an orientation selected is called an oriented vector space, while one not having an orientation selected, is called . In mathematics, ''orientability'' is a broader notion that, in two dimensions, allows one to say when a cycle goes around clockwise or counterclockwise, and in three dimensions when a figure is left-handed or right-handed. In linear algebra over the real numbers, the notion of orientation makes sense in arbitrary finite dimension, and is a kind of asymmetry that makes a reflection impossible to replicate by means of a simple displacement. Thus, in three dimensions, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cartesian Coordinate System Handedness
Cartesian means of or relating to the French philosopher René Descartes—from his Latinized name ''Cartesius''. It may refer to: Mathematics *Cartesian closed category, a closed category in category theory *Cartesian coordinate system, modern rectangular coordinate system *Cartesian diagram, a construction in category theory *Cartesian geometry, now more commonly called analytic geometry *Fibred category#Cartesian morphisms and functors, Cartesian morphism, formalisation of ''pull-back'' operation in category theory *Cartesian oval, a curve *Cartesian product, a direct product of two sets *Cartesian product of graphs, a binary operation on graphs *Cartesian tree, a binary tree in computer science Philosophy *Cartesian anxiety, a hope that studying the world will give us unchangeable knowledge of ourselves and the world *Cartesian circle, a potential mistake in reasoning *Cartesian doubt, a form of methodical skepticism as a basis for philosophical rigor *Cartesian dualism, the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Standard Basis
In mathematics, the standard basis (also called natural basis or canonical basis) of a coordinate vector space (such as \mathbb^n or \mathbb^n) is the set of vectors, each of whose components are all zero, except one that equals 1. For example, in the case of the Euclidean plane \mathbb^2 formed by the pairs of real numbers, the standard basis is formed by the vectors \mathbf_x = (1,0),\quad \mathbf_y = (0,1). Similarly, the standard basis for the three-dimensional space \mathbb^3 is formed by vectors \mathbf_x = (1,0,0),\quad \mathbf_y = (0,1,0),\quad \mathbf_z=(0,0,1). Here the vector e''x'' points in the ''x'' direction, the vector e''y'' points in the ''y'' direction, and the vector e''z'' points in the ''z'' direction. There are several common notations for standard-basis vectors, including , , , and . These vectors are sometimes written with a hat to emphasize their status as unit vectors (standard unit vectors). These vectors are a basis in the sense that any othe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Oriented Circle
The Laguerre transformations or axial homographies are an analogue of Möbius transformations over the dual numbers. Originally published as ''Kompleksnye Chisla i Ikh Primenenie v Geometrii'' (in Russian). Moscow: Fizmatgiz. 1963 When studying these transformations, the dual numbers are often interpreted as representing oriented lines on the plane. The Laguerre transformations map lines to lines, and include in particular all Euclidean group, isometries of the plane. Strictly speaking, these transformations act on the Dual number#Projective line, dual number projective line, which adjoins to the dual numbers a set of points at infinity. Topologically, this projective line is equivalent to a cylinder. Points on this cylinder are in a natural one-to-one correspondence with oriented line (geometry), lines on the plane. Definition A Laguerre transformation is a linear fractional transformation z\mapsto\frac where a,b,c,d are all dual numbers, z lies on the dual number projective ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Line (geometry)
In geometry, a straight line, usually abbreviated line, is an infinitely long object with no width, depth, or curvature, an idealization of such physical objects as a straightedge, a taut string, or a ray (optics), ray of light. Lines are space (mathematics), spaces of dimension one, which may be Embedding, embedded in spaces of dimension two, three, or higher. The word ''line'' may also refer, in everyday life, to a line segment, which is a part of a line delimited by two Point (geometry), points (its ''endpoints''). Euclid's Elements, Euclid's ''Elements'' defines a straight line as a "breadthless length" that "lies evenly with respect to the points on itself", and introduced several postulates as basic unprovable properties on which the rest of geometry was established. ''Euclidean line'' and ''Euclidean geometry'' are terms introduced to avoid confusion with generalizations introduced since the end of the 19th century, such as Non-Euclidean geometry, non-Euclidean, Project ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Coordinate Space
In mathematics, the real coordinate space or real coordinate ''n''-space, of dimension , denoted or , is the set of all ordered -tuples of real numbers, that is the set of all sequences of real numbers, also known as '' coordinate vectors''. Special cases are called the '' real line'' , the ''real coordinate plane'' , and the ''real coordinate three-dimensional space'' . With component-wise addition and scalar multiplication, it is a real vector space. The coordinates over any basis of the elements of a real vector space form a ''real coordinate space'' of the same dimension as that of the vector space. Similarly, the Cartesian coordinates of the points of a Euclidean space of dimension , ( Euclidean line, ; Euclidean plane, ; Euclidean three-dimensional space, ) form a ''real coordinate space'' of dimension . These one to one correspondences between vectors, points and coordinate vectors explain the names of ''coordinate space'' and ''coordinate vector''. It allows us ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Manifold With Boundary
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of n-dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not self-crossing curves such as a figure 8. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane. The concept of a manifold is central to many parts of geometry and modern mathematical physics because it allows complicated structures to be described in terms of well-understood topological properties of simpler spaces. Manifolds naturally arise as solution sets of systems of equations and as graphs of functions. The concept has applications in computer-graphics given the need to associate ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stokes' Theorem
Stokes' theorem, also known as the Kelvin–Stokes theorem after Lord Kelvin and George Stokes, the fundamental theorem for curls, or simply the curl theorem, is a theorem in vector calculus on \R^3. Given a vector field, the theorem relates the integral of the curl of the vector field over some surface, to the line integral of the vector field around the boundary of the surface. The classical theorem of Stokes can be stated in one sentence: : The line integral of a vector field over a loop is equal to the surface integral of its '' curl'' over the enclosed surface. Stokes' theorem is a special case of the generalized Stokes theorem. In particular, a vector field on \R^3 can be considered as a 1-form in which case its curl is its exterior derivative, a 2-form. Theorem Let \Sigma be a smooth oriented surface in \R^3 with boundary \partial \Sigma \equiv \Gamma . If a vector field \mathbf(x,y,z) = (F_x(x, y, z), F_y(x, y, z), F_z(x, y, z)) is defined and has continuous first ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fundamental Theorem Of Calculus
The fundamental theorem of calculus is a theorem that links the concept of derivative, differentiating a function (mathematics), function (calculating its slopes, or rate of change at every point on its domain) with the concept of integral, integrating a function (calculating the area under its graph, or the cumulative effect of small contributions). Roughly speaking, the two operations can be thought of as inverses of each other. The first part of the theorem, the first fundamental theorem of calculus, states that for a continuous function , an antiderivative or indefinite integral can be obtained as the integral of over an interval with a variable upper bound. Conversely, the second part of the theorem, the second fundamental theorem of calculus, states that the integral of a function over a fixed Interval (mathematics), interval is equal to the change of any antiderivative between the ends of the interval. This greatly simplifies the calculation of a definite integral pr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Zero-dimensional Space
In mathematics, a zero-dimensional topological space (or nildimensional space) is a topological space that has dimension zero with respect to one of several inequivalent notions of assigning a dimension to a given topological space. A graphical illustration of a zero-dimensional space is a point. Definition Specifically: * A topological space is zero-dimensional with respect to the Lebesgue covering dimension if every open cover of the space has a refinement that is a cover by disjoint open sets. * A topological space is zero-dimensional with respect to the finite-to-finite covering dimension if every finite open cover of the space has a refinement that is a finite open cover such that any point in the space is contained in exactly one open set of this refinement. * A topological space is zero-dimensional with respect to the small inductive dimension if it has a base consisting of clopen sets. The three notions above agree for separable, metrisable spaces. Properties of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Empty Set
In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set. Any set other than the empty set is called ''non-empty''. In some textbooks and popularizations, the empty set is referred to as the "null set". However, null set is a distinct notion within the context of measure theory, in which it describes a set of measure zero (which is not necessarily empty). Notation Common notations for the empty set include "", "\emptyset", and "∅". The latter two symbols were introduced by the Bourbaki group (specifically André Weil) in 1939, inspired by the letter Ø () in the Danish orthography, Danish and Norwegian orthography, Norwegian a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Permutation Matrix
In mathematics, particularly in matrix theory, a permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column with all other entries 0. An permutation matrix can represent a permutation of elements. Pre- multiplying an -row matrix by a permutation matrix , forming , results in permuting the rows of , while post-multiplying an -column matrix , forming , permutes the columns of . Every permutation matrix ''P'' is orthogonal, with its inverse equal to its transpose: P^=P^\mathsf. Indeed, permutation matrices can be characterized as the orthogonal matrices whose entries are all non-negative. The two permutation/matrix correspondences There are two natural one-to-one correspondences between permutations and permutation matrices, one of which works along the rows of the matrix, the other along its columns. Here is an example, starting with a permutation in two-line form at the upper left: :\begin \pi\colon\begin1&2&3&4\\3&2&4&1\e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Signature (permutation)
In mathematics, when ''X'' is a finite set with at least two elements, the permutations of ''X'' (i.e. the bijective functions from ''X'' to ''X'') fall into two classes of equal size: the even permutations and the odd permutations. If any total ordering of ''X'' is fixed, the parity (oddness or evenness) of a permutation \sigma of ''X'' can be defined as the parity of the number of inversions for ''σ'', i.e., of pairs of elements ''x'', ''y'' of ''X'' such that and . The sign, signature, or signum of a permutation ''σ'' is denoted sgn(''σ'') and defined as +1 if ''σ'' is even and −1 if ''σ'' is odd. The signature defines the alternating character of the symmetric group S''n''. Another notation for the sign of a permutation is given by the more general Levi-Civita symbol (''ε''''σ''), which is defined for all maps from ''X'' to ''X'', and has value zero for non-bijective maps. The sign of a permutation can be explicitly expressed as : where ''N''('' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |