HOME
*





Onium
An onium (plural: onia) is a bound state of a particle and its antiparticle. These states are usually named by adding the suffix ''-onium'' to the name of one of the constituent particles (replacing an ''-on'' suffix when present), with one exception for " muonium"; a muon–antimuon bound pair is called " true muonium" to avoid confusion with old nomenclature. Examples Positronium is an onium which consists of an electron and a positron bound together as a long-lived metastable state. Positronium has been studied since the 1950s to understand bound states in quantum field theory. A recent development called non-relativistic quantum electrodynamics (NRQED) used this system as a proving ground. Pionium, a bound state of two oppositely-charged pions, is interesting for exploring the strong interaction. This should also be true of protonium. The true analogs of positronium in the theory of strong interactions are the quarkonium states: they are mesons made of a heavy quark and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Onium Ion
In chemistry, an onium ion is a cation formally obtained by the protonation of mononuclear parent hydride of a pnictogen (group 15 of the periodic table), chalcogen (group 16), or halogen (group 17). The oldest-known onium ion, and the namesake for the class, is ammonium, , the protonated derivative of ammonia, . The name onium is also used for cations that would result from the substitution of hydrogen atoms in those ions by other groups, such as organic radicals, or halogens; such as tetraphenylphosphonium, . The substituent groups may be divalent or trivalent, yielding ions such as iminium and nitrilium. A simple onium ion has a charge of +1. A larger ion that has two onium ion subgroups is called a double onium ion, and has a charge of +2. A triple onium ion has a charge of +3, and so on. Compounds of an onium cation and some other anion are known as onium compounds or onium salts. Onium ions and onium compounds are inversely analogous to ions and ate complexes: * Le ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exotic Atom
An exotic atom is an otherwise normal atom in which one or more sub-atomic particles have been replaced by other particles of the same charge. For example, electrons may be replaced by other negatively charged particles such as muons (muonic atoms) or pions (pionic atoms).Exotic atoms
, AccessScience, McGraw-Hill. accessdate=September 26, 2007.
Because these substitute particles are usually unstable, exotic atoms typically have very short lifetimes and no exotic atom observed so far can persist under normal conditions.


Muonic atoms

In a ''muonic atom'' (previously called a ''mu-mesic'' atom, now known to be a misnomer as muo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


True Muonium
In particle physics, true muonium is a theoretically predicted exotic atom representing a bound state of an muon and an antimuon (μ+μ−). The existence of true muonium is well established theoretically within the Standard Model. Its properties within the Standard Model are determined by quantum electrodynamics, and may be modified by physics beyond the Standard Model. True muonium is yet to be observed experimentally, though it may have been produced in experiments involving collisions of electron and positron beams. The ortho-state of true muonium (i.e. the state with parallel alignment of the muon and antimuon spins) is expected to be relatively long-lived (with a lifetime of ), and decay predominantly to an e+e− pair, which makes it possible for LHCb experiment at CERN to observe it with the dataset collected by 2025. Experimental research There are several experimental projects searching for the true muonium. One of them is the μμ-tron experiment (Myumutron) pl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pionium
Pionium is a composite particle consisting of one and one meson. It can be created, for instance, by interaction of a proton beam accelerated by a particle accelerator and a target nucleus. Pionium has a short lifetime, predicted by chiral perturbation theory to be . It decays mainly into two mesons, and to a smaller extent into two photons. It has been investigated at CERN to measure its lifetime. The Dimeson Relativistic Atomic Complex (DIRAC) experiment at the Proton Synchrotron was able to detect 21227 atomic pairs from a total of events, which allows the pionium lifetime to be determined to within statistical errors of 9%. In 2006, the NA48/2 collaboration at CERN published an evidence for pionium production and decay in decays of charged kaons, studying mass spectra of daughter pion pairs in the events with three pions in the final state K± → π±(ππ)atom → π±π0π0. This was followed by a precision measurement of the S-wave pion scatteri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pionium
Pionium is a composite particle consisting of one and one meson. It can be created, for instance, by interaction of a proton beam accelerated by a particle accelerator and a target nucleus. Pionium has a short lifetime, predicted by chiral perturbation theory to be . It decays mainly into two mesons, and to a smaller extent into two photons. It has been investigated at CERN to measure its lifetime. The Dimeson Relativistic Atomic Complex (DIRAC) experiment at the Proton Synchrotron was able to detect 21227 atomic pairs from a total of events, which allows the pionium lifetime to be determined to within statistical errors of 9%. In 2006, the NA48/2 collaboration at CERN published an evidence for pionium production and decay in decays of charged kaons, studying mass spectra of daughter pion pairs in the events with three pions in the final state K± → π±(ππ)atom → π±π0π0. This was followed by a precision measurement of the S-wave pion scatteri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Muonium
Muonium is an exotic atom made up of an antimuon and an electron, which was discovered in 1960 by Vernon W. Hughes and is given the chemical symbol Mu. During the muon's lifetime, muonium can undergo chemical reactions. Due to the mass difference between the antimuon and the electron, muonium () is more similar to atomic hydrogen () than positronium (). Its Bohr radius and ionization energy are within 0.5% of hydrogen, deuterium, and tritium, and thus it can usefully be considered as an exotic light isotope of hydrogen. Although muonium is short-lived, physical chemists study it using muon spin spectroscopy (μSR), a magnetic resonance technique analogous to nuclear magnetic resonance (NMR) or electron spin resonance (ESR) spectroscopy. Like ESR, μSR is useful for the analysis of chemical transformations and the structure of compounds with novel or potentially valuable electronic properties. Muonium is usually studied by muon spin rotation, in which the Mu atom's spin p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Protonium
Protonium (symbol: Pn), also known as antiprotonic hydrogen, is a type of exotic atom in which a proton (symbol: p) and an antiproton (symbol: ) orbit each other. Since protonium is a bound system of a particle and its corresponding antiparticle, it is an example of a type of exotic atom called an onium. Protonium has a mean lifetime of approximately 1.0 μs and a binding energy of −0.75  keV. Like all onia, protonium is a boson with all quantum numbers ( baryon number, flavour quantum numbers, etc.) and electrical charge equal to 0. Production There are two known methods to generate protonium. One method involves violent particle collisions. The other method involves putting antiprotons and protons into the same magnetic cage. The latter method was first used during the experiment ATHENA (ApparaTus for High precision Experiment on Neutral Antimatter) at the CERN laboratory in Geneva in 2002, but it was not until 2006 that scientists realized protoniu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mesons
In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, they have a meaningful physical size, a diameter of roughly one femtometre (10 m), which is about 0.6 times the size of a proton or neutron. All mesons are unstable, with the longest-lived lasting for only a few hundredths of a microsecond. Heavier mesons decay to lighter mesons and ultimately to stable electrons, neutrinos and photons. Outside the nucleus, mesons appear in nature only as short-lived products of very high-energy collisions between particles made of quarks, such as cosmic rays (high-energy protons and neutrons) and baryonic matter. Mesons are routinely produced artificially in cyclotrons or other particle accelerators in the collisions of protons, antiprotons, or other particles. Higher-energy (more massive) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Particle
In the physical sciences, a particle (or corpuscule in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from subatomic particles like the electron, to microscopic particles like atoms and molecules, to macroscopic particles like powders and other granular materials. Particles can also be used to create scientific models of even larger objects depending on their density, such as humans moving in a crowd or celestial bodies in motion. The term ''particle'' is rather general in meaning, and is refined as needed by various scientific fields. Anything that is composed of particles may be referred to as being particulate. However, the noun '' particulate'' is most frequently used to refer to pollutants in the Earth's atmosphere, which are a suspension of unconnected particles, rather than a connected particle aggregation. Conceptual prope ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pentaquark
A pentaquark is a human-made subatomic particle, consisting of four quarks and one antiquark bound together; they are not known to occur naturally, or exist outside of experiments specifically carried out to create them. As quarks have a baryon number of , and antiquarks of , the pentaquark would have a total baryon number of 1, and thus would be a baryon. Further, because it has five quarks instead of the usual three found in regular baryons ( 'triquarks'), it is classified as an exotic baryon. The name pentaquark was coined by Claude Gignoux ''et al.'' (1987) and Harry J. Lipkin in 1987; however, the possibility of five-quark particles was identified as early as 1964 when Murray Gell-Mann first postulated the existence of quarks. Although predicted for decades, pentaquarks proved surprisingly difficult to discover and some physicists were beginning to suspect that an unknown law of nature prevented their production. The first claim of pentaquark discovery was record ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mesonic Molecule
A mesonic molecule is a set of two or more mesons bound together by the strong force. Unlike baryonic molecules, which form the nuclei of all elements in nature save hydrogen-1, a mesonic molecule has yet to be definitively observed. The X(3872) discovered in 2003 and the Z(4430) discovered in 2007 by the Belle experiment are the best candidates for such an observation. See also *Meson *Tetraquark A tetraquark, in particle physics, is an exotic meson composed of four valence quarks. A tetraquark state has long been suspected to be allowed by quantum chromodynamics, the modern theory of strong interactions. A tetraquark state is an example ... * Pionium References Hypothetical composite particles {{Particle-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exotic Hadron
Exotic hadrons are subatomic particles composed of quarks and gluons, but which – unlike "well-known" hadrons such as protons, neutrons and mesons – consist of more than three valence quarks. By contrast, "ordinary" hadrons contain just two or three quarks. Hadrons with explicit valence gluon content would also be considered exotic. In theory, there is no limit on the number of quarks in a hadron, as long as the hadron's color charge is white, or color-neutral. Consistent with ordinary hadrons, exotic hadrons are classified as being either fermions, like ordinary baryons, or bosons, like ordinary mesons. According to this classification scheme, pentaquarks, containing five valence quarks, are exotic baryons, while tetraquarks (four valence quarks) and hexaquarks (six quarks, consisting of either a dibaryon or three quark-antiquark pairs) would be considered exotic mesons. Tetraquark and pentaquark particles are believed to have been observed and are being investigated; ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]