Null Cone
   HOME
*





Null Cone
In mathematics, given a vector space ''X'' with an associated quadratic form ''q'', written , a null vector or isotropic vector is a non-zero element ''x'' of ''X'' for which . In the theory of real bilinear forms, definite quadratic forms and isotropic quadratic forms are distinct. They are distinguished in that only for the latter does there exist a nonzero null vector. A quadratic space which has a null vector is called a pseudo-Euclidean space. A pseudo-Euclidean vector space may be decomposed (non-uniquely) into orthogonal subspaces ''A'' and ''B'', , where ''q'' is positive-definite on ''A'' and negative-definite on ''B''. The null cone, or isotropic cone, of ''X'' consists of the union of balanced spheres: \bigcup_ \. The null cone is also the union of the isotropic lines through the origin. Examples The light-like vectors of Minkowski space are null vectors. The four linearly independent biquaternions , , , and are null vectors and can serve as a basis for the sub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Basis (linear Algebra)
In mathematics, a set of vectors in a vector space is called a basis if every element of may be written in a unique way as a finite linear combination of elements of . The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to . The elements of a basis are called . Equivalently, a set is a basis if its elements are linearly independent and every element of is a linear combination of elements of . In other words, a basis is a linearly independent spanning set. A vector space can have several bases; however all the bases have the same number of elements, called the ''dimension'' of the vector space. This article deals mainly with finite-dimensional vector spaces. However, many of the principles are also valid for infinite-dimensional vector spaces. Definition A basis of a vector space over a field (such as the real numbers or the complex numbers ) is a linearly independent subset of that spans . This me ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Academic Press
Academic Press (AP) is an academic book publisher founded in 1941. It was acquired by Harcourt, Brace & World in 1969. Reed Elsevier bought Harcourt in 2000, and Academic Press is now an imprint of Elsevier. Academic Press publishes reference books, serials and online products in the subject areas of: * Communications engineering * Economics * Environmental science * Finance * Food science and nutrition * Geophysics * Life sciences * Mathematics and statistics * Neuroscience * Physical sciences * Psychology Well-known products include the ''Methods in Enzymology'' series and encyclopedias such as ''The International Encyclopedia of Public Health'' and the ''Encyclopedia of Neuroscience''. See also * Akademische Verlagsgesellschaft (AVG) — the German predecessor, founded in 1906 by Leo Jolowicz (1868–1940), the father of Walter Jolowicz Walter may refer to: People * Walter (name), both a surname and a given name * Little Walter, American blues harmonica player Marion Wa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lie Algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identity. The Lie bracket of two vectors x and y is denoted [x,y]. The vector space \mathfrak g together with this operation is a non-associative algebra, meaning that the Lie bracket is not necessarily associative property, associative. Lie algebras are closely related to Lie groups, which are group (mathematics), groups that are also smooth manifolds: any Lie group gives rise to a Lie algebra, which is its tangent space at the identity. Conversely, to any finite-dimensional Lie algebra over real or complex numbers, there is a corresponding connected space, connected Lie group unique up to finite coverings (Lie's third theorem). This Lie group–Lie algebra correspondence, correspondence allows one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Verma Module
Verma modules, named after Daya-Nand Verma, are objects in the representation theory of Lie algebras, a branch of mathematics. Verma modules can be used in the classification of irreducible representations of a complex semisimple Lie algebra. Specifically, although Verma modules themselves are infinite dimensional, quotients of them can be used to construct finite-dimensional representations with highest weight \lambda, where \lambda is dominant and integral. Their homomorphisms correspond to invariant differential operators over flag manifolds. Informal construction We can explain the idea of a Verma module as follows. Let \mathfrak be a semisimple Lie algebra (over \mathbb, for simplicity). Let \mathfrak be a fixed Cartan subalgebra of \mathfrak and let R be the associated root system. Let R^+ be a fixed set of positive roots. For each \alpha\in R^+, choose a nonzero element X_\alpha for the corresponding root space \mathfrak_\alpha and a nonzero element Y_\alpha in the root ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Division Algebra
In the field of mathematics called abstract algebra, a division algebra is, roughly speaking, an algebra over a field in which division, except by zero, is always possible. Definitions Formally, we start with a non-zero algebra ''D'' over a field. We call ''D'' a division algebra if for any element ''a'' in ''D'' and any non-zero element ''b'' in ''D'' there exists precisely one element ''x'' in ''D'' with ''a'' = ''bx'' and precisely one element ''y'' in ''D'' such that . For associative algebras, the definition can be simplified as follows: a non-zero associative algebra over a field is a division algebra if and only if it has a multiplicative identity element 1 and every non-zero element ''a'' has a multiplicative inverse (i.e. an element ''x'' with ). Associative division algebras The best-known examples of associative division algebras are the finite-dimensional real ones (that is, algebras over the field R of real numbers, which are finite- dimensional as a vector space ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Composition Algebra
In mathematics, a composition algebra over a field is a not necessarily associative algebra over together with a nondegenerate quadratic form that satisfies :N(xy) = N(x)N(y) for all and in . A composition algebra includes an involution called a conjugation: x \mapsto x^*. The quadratic form N(x) = x x^* is called the norm of the algebra. A composition algebra (''A'', ∗, ''N'') is either a division algebra or a split algebra, depending on the existence of a non-zero ''v'' in ''A'' such that ''N''(''v'') = 0, called a null vector. When ''x'' is ''not'' a null vector, the multiplicative inverse of ''x'' is When there is a non-zero null vector, ''N'' is an isotropic quadratic form, and "the algebra splits". Structure theorem Every unital composition algebra over a field can be obtained by repeated application of the Cayley–Dickson construction starting from (if the characteristic of is different from ) or a 2-dimensional composition subalgebra (if ).  The poss ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Project Euclid
Project Euclid is a collaborative partnership between Cornell University Library and Duke University Press which seeks to advance scholarly communication in theoretical and applied mathematics and statistics through partnerships with independent and society publishers. It was created to provide a platform for small publishers of scholarly journals to move from print to electronic in a cost-effective way. Through a combination of support by subscribing libraries and participating publishers, Project Euclid has made 70% of its journal articles available as open access. As of 2010, Project Euclid provided access to over one million pages of open-access content. Mission and goals Project Euclid's stated mission is to advance scholarly communication in the field of theoretical and applied mathematics and statistics. Through a "mixture of open access, subscription, and hosted subscription content it provides a way for small publishers (especially societies) to host their math or statistic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Communications In Mathematical Physics
''Communications in Mathematical Physics'' is a peer-reviewed academic journal published by Springer. The journal publishes papers in all fields of mathematical physics, but focuses particularly in analysis related to condensed matter physics, statistical mechanics and quantum field theory, and in operator algebras, quantum information and relativity. History Rudolf Haag conceived this journal with Res Jost, and Haag became the Founding Chief Editor. The first issue of ''Communications in Mathematical Physics'' appeared in 1965. Haag guided the journal for the next eight years. Then Klaus Hepp succeeded him for three years, followed by James Glimm, for another three years. Arthur Jaffe began as chief editor in 1979 and served for 21 years. Michael Aizenman became the fifth chief editor in the year 2000 and served in this role until 2012. The current editor-in-chief is Horng-Tzer Yau. Archives Articles from 1965 to 1997 are available in electronic form free of charge, via Pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Newman–Penrose Formalism
The Newman–Penrose (NP) formalism The original paper by Newman and Penrose, which introduces the formalism, and uses it to derive example results.Ezra T Newman, Roger Penrose. ''Errata: An Approach to Gravitational Radiation by a Method of Spin Coefficients''. Journal of Mathematical Physics, 1963, 4(7): 998. is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spacetime
In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why different observers perceive differently where and when events occur. Until the 20th century, it was assumed that the three-dimensional geometry of the universe (its spatial expression in terms of coordinates, distances, and directions) was independent of one-dimensional time. The physicist Albert Einstein helped develop the idea of spacetime as part of his theory of relativity. Prior to his pioneering work, scientists had two separate theories to explain physical phenomena: Isaac Newton's laws of physics described the motion of massive objects, while James Clerk Maxwell's electromagnetic models explained the properties of light. However, in 1905, Einstein based a work on special relativity on two postulates: * The laws of physics are invariant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]