Nearest-neighbor Graph
   HOME
*



picture info

Nearest-neighbor Graph
The nearest neighbor graph (NNG) is a directed graph defined for a set of points in a metric space, such as the Euclidean distance in the plane. The NNG has a vertex for each point, and a directed edge from ''p'' to ''q'' whenever ''q'' is a nearest neighbor of ''p'', a point whose distance from ''p'' is minimum among all the given points other than ''p'' itself. In many uses of these graphs, the directions of the edges are ignored and the NNG is defined instead as an undirected graph. However, the nearest neighbor relation is not a symmetric one, i.e., ''p'' from the definition is not necessarily a nearest neighbor for ''q''. In theoretical discussions of algorithms a kind of general position is often assumed, namely, the nearest (k-nearest) neighbor is unique for each object. In implementations of the algorithms it is necessary to bear in mind that this is not always the case. For situations in which it is necessary to make the nearest neighbor for each object unique, th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Nearest Neighbor Graph
The nearest neighbor graph (NNG) is a directed graph defined for a set of points in a metric space, such as the Euclidean distance in the plane. The NNG has a vertex for each point, and a directed edge from ''p'' to ''q'' whenever ''q'' is a nearest neighbor of ''p'', a point whose distance from ''p'' is minimum among all the given points other than ''p'' itself. In many uses of these graphs, the directions of the edges are ignored and the NNG is defined instead as an undirected graph. However, the nearest neighbor relation is not a symmetric one, i.e., ''p'' from the definition is not necessarily a nearest neighbor for ''q''. In theoretical discussions of algorithms a kind of general position is often assumed, namely, the nearest (k-nearest) neighbor is unique for each object. In implementations of the algorithms it is necessary to bear in mind that this is not always the case. For situations in which it is necessary to make the nearest neighbor for each object unique, the set '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Facilities Location
The study of facility location problems (FLP), also known as location analysis, is a branch of operations research and computational geometry concerned with the optimal placement of facilities to minimize transportation costs while considering factors like avoiding placing hazardous materials near housing, and competitors' facilities. The techniques also apply to cluster analysis. Minimum facility location A simple facility location problem is the Weber problem, in which a single facility is to be placed, with the only optimization criterion being the minimization of the weighted sum of distances from a given set of point sites. More complex problems considered in this discipline include the placement of multiple facilities, constraints on the locations of facilities, and more complex optimization criteria. In a basic formulation, the facility location problem consists of a set of potential facility sites ''L'' where a facility can be opened, and a set of demand points ''D'' tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Element Uniqueness Problem
In computational complexity theory, the element distinctness problem or element uniqueness problem is the problem of determining whether all the elements of a list are distinct. It is a well studied problem in many different models of computation. The problem may be solved by sorting the list and then checking if there are any consecutive equal elements; it may also be solved in linear expected time by a randomized algorithm that inserts each item into a hash table and compares only those elements that are placed in the same hash table cell. Several lower bounds in computational complexity are proved by reducing the element distinctness problem to the problem in question, i.e., by demonstrating that the solution of the element uniqueness problem may be quickly found after solving the problem in question. Decision tree complexity The number of comparisons needed to solve the problem of size n, in a comparison-based model of computation such as a decision tree or algebraic decision t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Models Of Computation
In computer science, and more specifically in computability theory and computational complexity theory, a model of computation is a model which describes how an output of a mathematical function is computed given an input. A model describes how units of computations, memories, and communications are organized. The computational complexity of an algorithm can be measured given a model of computation. Using a model allows studying the performance of algorithms independently of the variations that are specific to particular implementations and specific technology. Models Models of computation can be classified into three categories: sequential models, functional models, and concurrent models. Sequential models Sequential models include: * Finite state machines * Post machines (Post–Turing machines and tag machines). * Pushdown automata * Register machines ** Random-access machines * Turing machines * Decision tree model Functional models Functional models include: * Abstract rew ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Asymptotically Optimal
In computer science, an algorithm is said to be asymptotically optimal if, roughly speaking, for large inputs it performs at worst a constant factor (independent of the input size) worse than the best possible algorithm. It is a term commonly encountered in computer science research as a result of widespread use of big-O notation. More formally, an algorithm is asymptotically optimal with respect to a particular resource if the problem has been proven to require of that resource, and the algorithm has been proven to use only These proofs require an assumption of a particular model of computation, i.e., certain restrictions on operations allowable with the input data. As a simple example, it's known that all comparison sorts require at least comparisons in the average and worst cases. Mergesort and heapsort are comparison sorts which perform comparisons, so they are asymptotically optimal in this sense. If the input data have some ''a priori'' properties which can be explo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sorting
Sorting refers to ordering data in an increasing or decreasing manner according to some linear relationship among the data items. # ordering: arranging items in a sequence ordered by some criterion; # categorizing: grouping items with similar properties. Ordering items is the combination of categorizing them based on equivalent order, and ordering the categories themselves. Sorting information or data In , arranging in an ordered sequence is called "sorting". Sorting is a common operation in many applications, and efficient algorithms to perform it have been developed. The most common uses of sorted sequences are: * making lookup or search efficient; * making merging of sequences efficient. * enable processing of data in a defined order. The opposite of sorting, rearranging a sequence of items in a random or meaningless order, is called shuffling. For sorting, either a weak order, "should not come after", can be specified, or a strict weak order, "should come before" (specif ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Big O Notation
Big ''O'' notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by Paul Bachmann, Edmund Landau, and others, collectively called Bachmann–Landau notation or asymptotic notation. The letter O was chosen by Bachmann to stand for ''Ordnung'', meaning the order of approximation. In computer science, big O notation is used to classify algorithms according to how their run time or space requirements grow as the input size grows. In analytic number theory, big O notation is often used to express a bound on the difference between an arithmetical function and a better understood approximation; a famous example of such a difference is the remainder term in the prime number theorem. Big O notation is also used in many other fields to provide similar estimates. Big O notation characterizes functions according to their growth rates: d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Forest (graph Theory)
In graph theory, a tree is an undirected graph in which any two vertices are connected by ''exactly one'' path, or equivalently a connected acyclic undirected graph. A forest is an undirected graph in which any two vertices are connected by ''at most one'' path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees. A polytreeSee . (or directed tree or oriented treeSee .See . or singly connected networkSee .) is a directed acyclic graph (DAG) whose underlying undirected graph is a tree. A polyforest (or directed forest or oriented forest) is a directed acyclic graph whose underlying undirected graph is a forest. The various kinds of data structures referred to as trees in computer science have underlying graphs that are trees in graph theory, although such data structures are generally rooted trees. A rooted tree may be directed, called a directed rooted tree, either making all its edges point away from the root—in which case it is called an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Path (graph Theory)
In graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices which, by most definitions, are all distinct (and since the vertices are distinct, so are the edges). A directed path (sometimes called dipathGraph Structure Theory: Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Graph Minors, Held June 22 to July 5, 1991p.205/ref>) in a directed graph is a finite or infinite sequence of edges which joins a sequence of distinct vertices, but with the added restriction that the edges be all directed in the same direction. Paths are fundamental concepts of graph theory, described in the introductory sections of most graph theory texts. See e.g. Bondy and Murty (1976), Gibbons (1985), or Diestel (2005). Korte et al. (1990) cover more advanced algorithmic topics concerning paths in graphs. Definitions Walk, trail, and path * A walk is a finite or infinite sequence of edges which joins a sequence of vertices. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computational Geometry
Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems are also considered to be part of computational geometry. While modern computational geometry is a recent development, it is one of the oldest fields of computing with a history stretching back to antiquity. Analysis of algorithms, Computational complexity is central to computational geometry, with great practical significance if algorithms are used on very large datasets containing tens or hundreds of millions of points. For such sets, the difference between O(''n''2) and O(''n'' log ''n'') may be the difference between days and seconds of computation. The main impetus for the development of computational geometry as a discipline was progress in computer graphics and computer-aided design and manufacturing (Computer-aided design, CAD/Compu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hierarchical Clustering
In data mining and statistics, hierarchical clustering (also called hierarchical cluster analysis or HCA) is a method of cluster analysis that seeks to build a hierarchy of clusters. Strategies for hierarchical clustering generally fall into two categories: * Agglomerative: This is a " bottom-up" approach: Each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy. * Divisive: This is a "top-down" approach: All observations start in one cluster, and splits are performed recursively as one moves down the hierarchy. In general, the merges and splits are determined in a greedy manner. The results of hierarchical clustering are usually presented in a dendrogram. The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of \mathcal(n^3) and requires \Omega(n^2) memory, which makes it too slow for even medium data sets. However, for some special cases, optimal efficient agglomerative methods (of c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]