HOME
*





Natural Number Object
In category theory, a natural numbers object (NNO) is an object endowed with a recursive structure similar to natural numbers. More precisely, in a category E with a terminal object 1, an NNO ''N'' is given by: # a global element ''z'' : 1 → ''N'', and # an arrow ''s'' : ''N'' → ''N'', such that for any object ''A'' of E, global element ''q'' : 1 → ''A'', and arrow ''f'' : ''A'' → ''A'', there exists a unique arrow ''u'' : ''N'' → ''A'' such that: # ''u'' ∘ ''z'' = ''q'', and # ''u'' ∘ ''s'' = ''f'' ∘ ''u''. In other words, the triangle and square in the following diagram commute. The pair (''q'', ''f'') is sometimes called the ''recursion data'' for ''u'', given in the form of a recursive definition: # ⊢ ''u'' (''z'') = ''q'' # ''y'' ∈E ''N'' ⊢ ''u'' (''s'' ''y'') = ''f'' (''u'' (''y'')) The above definition is the universal property of NNOs, meaning they are defined up to canonical isomorphism. If the arrow ''u'' as defined above merely has to exist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coproduct
In category theory, the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coproduct of a family of objects is essentially the "least specific" object to which each object in the family admits a morphism. It is the category-theoretic dual notion to the categorical product, which means the definition is the same as the product but with all arrows reversed. Despite this seemingly innocuous change in the name and notation, coproducts can be and typically are dramatically different from products. Definition Let C be a category and let X_1 and X_2 be objects of C. An object is called the coproduct of X_1 and X_2, written X_1 \sqcup X_2, or X_1 \oplus X_2, or sometimes simply X_1 + X_2, if there exist morphisms i_1 : X_1 \to X_1 \sqcup X_2 and i_2 : X_2 \to X_1 \sqcup X_2 satisfying the following universal property: for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Successor Function
In mathematics, the successor function or successor operation sends a natural number to the next one. The successor function is denoted by ''S'', so ''S''(''n'') = ''n'' +1. For example, ''S''(1) = 2 and ''S''(2) = 3. The successor function is one of the basic components used to build a primitive recursive function. Successor operations are also known as zeration in the context of a zeroth hyperoperation: H0(''a'', ''b'') = 1 + ''b''. In this context, the extension of zeration is addition, which is defined as repeated succession. Overview The successor function is part of the formal language used to state the Peano axioms, which formalise the structure of the natural numbers. In this formalisation, the successor function is a primitive operation on the natural numbers, in terms of which the standard natural numbers and addition is defined. For example, 1 is defined to be ''S''(0), and addition on natural numbers is defined recursively by: : This can be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Image (mathematics)
In mathematics, the image of a function is the set of all output values it may produce. More generally, evaluating a given function f at each element of a given subset A of its domain produces a set, called the "image of A under (or through) f". Similarly, the inverse image (or preimage) of a given subset B of the codomain of f, is the set of all elements of the domain that map to the members of B. Image and inverse image may also be defined for general binary relations, not just functions. Definition The word "image" is used in three related ways. In these definitions, f : X \to Y is a function from the set X to the set Y. Image of an element If x is a member of X, then the image of x under f, denoted f(x), is the value of f when applied to x. f(x) is alternatively known as the output of f for argument x. Given y, the function f is said to "" or "" if there exists some x in the function's domain such that f(x) = y. Similarly, given a set S, f is said to "" if there ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Element (set Theory)
In mathematics, an element (or member) of a set is any one of the distinct objects that belong to that set. Sets Writing A = \ means that the elements of the set are the numbers 1, 2, 3 and 4. Sets of elements of , for example \, are subsets of . Sets can themselves be elements. For example, consider the set B = \. The elements of are ''not'' 1, 2, 3, and 4. Rather, there are only three elements of , namely the numbers 1 and 2, and the set \. The elements of a set can be anything. For example, C = \ is the set whose elements are the colors , and . Notation and terminology The relation "is an element of", also called set membership, is denoted by the symbol "∈". Writing :x \in A means that "''x'' is an element of ''A''". Equivalent expressions are "''x'' is a member of ''A''", "''x'' belongs to ''A''", "''x'' is in ''A''" and "''x'' lies in ''A''". The expressions "''A'' includes ''x''" and "''A'' contains ''x''" are also used to mea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Singleton (mathematics)
In mathematics, a singleton, also known as a unit set or one-point set, is a set with exactly one element. For example, the set \ is a singleton whose single element is 0. Properties Within the framework of Zermelo–Fraenkel set theory, the axiom of regularity guarantees that no set is an element of itself. This implies that a singleton is necessarily distinct from the element it contains, thus 1 and are not the same thing, and the empty set is distinct from the set containing only the empty set. A set such as \ is a singleton as it contains a single element (which itself is a set, however, not a singleton). A set is a singleton if and only if its cardinality is . In von Neumann's set-theoretic construction of the natural numbers, the number 1 is ''defined'' as the singleton \. In axiomatic set theory, the existence of singletons is a consequence of the axiom of pairing: for any set ''A'', the axiom applied to ''A'' and ''A'' asserts the existence of \, which is the sa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Category Of Sets
In the mathematical field of category theory, the category of sets, denoted as Set, is the category whose objects are sets. The arrows or morphisms between sets ''A'' and ''B'' are the total functions from ''A'' to ''B'', and the composition of morphisms is the composition of functions. Many other categories (such as the category of groups, with group homomorphisms as arrows) add structure to the objects of the category of sets and/or restrict the arrows to functions of a particular kind. Properties of the category of sets The axioms of a category are satisfied by Set because composition of functions is associative, and because every set ''X'' has an identity function id''X'' : ''X'' → ''X'' which serves as identity element for function composition. The epimorphisms in Set are the surjective maps, the monomorphisms are the injective maps, and the isomorphisms are the bijective maps. The empty set serves as the initial object in Set with empty functions as morphisms. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coequalizer
In category theory, a coequalizer (or coequaliser) is a generalization of a quotient by an equivalence relation to objects in an arbitrary category. It is the categorical construction dual to the equalizer. Definition A coequalizer is a colimit of the diagram consisting of two objects ''X'' and ''Y'' and two parallel morphisms ''f'', ''g'' : ''X'' → ''Y''. More explicitly, a coequalizer can be defined as an object ''Q'' together with a morphism ''q'' : ''Y'' → ''Q'' such that ''q'' ∘ ''f'' = ''q'' ∘ ''g''. Moreover, the pair (''Q'', ''q'') must be universal in the sense that given any other such pair (''Q''′, ''q''′) there exists a unique morphism ''u'' : ''Q'' → ''Q''′ such that ''u'' ∘ ''q'' = ''q''′. This information can be captured by the following commutative diagram: As with all universal constructions, a coequalizer, if it exists, is unique up to a unique isomorphism (this is why, by abuse of language, one sometimes speaks of " ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Peter Freyd
Peter John Freyd (; born February 5, 1936) is an American mathematician, a professor at the University of Pennsylvania, known for work in category theory and for founding the False Memory Syndrome Foundation. Mathematics Freyd obtained his Ph.D. from Princeton University in 1960; his dissertation, on ''Functor Theory'', was written under the supervision of Norman Steenrod and David Buchsbaum. Freyd is best known for his adjoint functor theorem. He was the author of the foundational book ''Abelian Categories: An Introduction to the Theory of Functors'' (1964). This work culminates in a proof of the Freyd–Mitchell embedding theorem. In addition, Freyd's name is associated with the HOMFLYPT polynomial of knot theory, and he and Scedrov originated the concept of (mathematical) allegories. In 2012, he became a fellow of the American Mathematical Society. False Memory Syndrome Foundation Freyd and his wife Pamela founded the False Memory Syndrome Foundation in 1992, after ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Type Theory
In mathematics, logic, and computer science, a type theory is the formal presentation of a specific type system, and in general type theory is the academic study of type systems. Some type theories serve as alternatives to set theory as a foundation of mathematics. Two influential type theories that were proposed as foundations are Alonzo Church's typed λ-calculus and Per Martin-Löf's intuitionistic type theory. Most computerized proof-writing systems use a type theory for their foundation. A common one is Thierry Coquand's Calculus of Inductive Constructions. History Type theory was created to avoid a paradox in a mathematical foundation based on naive set theory and formal logic. Russell's paradox, which was discovered by Bertrand Russell, existed because a set could be defined using "all possible sets", which included itself. Between 1902 and 1908, Bertrand Russell proposed various "theories of type" to fix the problem. By 1908 Russell arrived at a "ramified" ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Non-standard Model
In model theory, a discipline within mathematical logic, a non-standard model is a model of a theory that is not isomorphic to the intended model (or standard model).Roman Kossak, 2004 ''Nonstandard Models of Arithmetic and Set Theory'' American Mathematical Soc. Existence If the intended model is infinite and the language is first-order, then the Löwenheim–Skolem theorems guarantee the existence of non-standard models. The non-standard models can be chosen as elementary extensions or elementary substructures of the intended model. Importance Non-standard models are studied in set theory, non-standard analysis and non-standard models of arithmetic. See also *Interpretation (logic) An interpretation is an assignment of meaning to the symbols of a formal language. Many formal languages used in mathematics, logic, and theoretical computer science are defined in solely syntactic terms, and as such do not have any meaning ... References {{DEFAULTSORT:Non-Standard Mod ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Slice Category
In mathematics, specifically category theory, an overcategory (and undercategory) is a distinguished class of categories used in multiple contexts, such as with covering spaces (espace etale). They were introduced as a mechanism for keeping track of data surrounding a fixed object X in some category \mathcal. There is a dual notion of undercategory, which is defined similarly. Definition Let \mathcal be a category and X a fixed object of \mathcalpg 59. The overcategory (also called a slice category) \mathcal/X is an associated category whose objects are pairs (A, \pi) where \pi:A \to X is a morphism in \mathcal. Then, a morphism between objects f:(A, \pi) \to (A', \pi') is given by a morphism f:A \to A' in the category \mathcal such that the following diagram commutes\begin A & \xrightarrow & A' \\ \pi\downarrow \text & \text &\text \downarrow \pi' \\ X & = & X \endThere is a dual notion called the undercategory (also called a coslice category) X/\mathcal whose objects are pair ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]