HOME
*





Normally Hyperbolic Invariant Manifold
A normally hyperbolic invariant manifold (NHIM) is a natural generalization of a hyperbolic fixed point and a hyperbolic set. The difference can be described heuristically as follows: For a manifold \Lambda to be normally hyperbolic we are allowed to assume that the dynamics of \Lambda itself is neutral compared with the dynamics nearby, which is not allowed for a hyperbolic set. NHIMs were introduced by Neil Fenichel in 1972. In this and subsequent papers, Fenichel proves that NHIMs possess stable and unstable manifolds and more importantly, NHIMs and their stable and unstable manifolds persist under small perturbations. Thus, in problems involving perturbation theory, invariant manifolds exist with certain hyperbolicity properties, which can in turn be used to obtain qualitative information about a dynamical system.A. Katok and B. Hasselblatt''Introduction to the Modern Theory of Dynamical Systems'', Cambridge University Press (1996), Definition Let ''M'' be a compact smo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hyperbolic Fixed Point
In the study of dynamical systems, a hyperbolic equilibrium point or hyperbolic fixed point is a fixed point that does not have any center manifolds. Near a hyperbolic point the orbits of a two-dimensional, non-dissipative system resemble hyperbolas. This fails to hold in general. Strogatz notes that "hyperbolic is an unfortunate name—it sounds like it should mean ' saddle point'—but it has become standard." Several properties hold about a neighborhood of a hyperbolic point, notably * A stable manifold and an unstable manifold exist, * Shadowing occurs, * The dynamics on the invariant set can be represented via symbolic dynamics, * A natural measure can be defined, * The system is structurally stable. Maps If T \colon \mathbb^ \to \mathbb^ is a ''C''1 map and ''p'' is a fixed point then ''p'' is said to be a hyperbolic fixed point when the Jacobian matrix \operatorname T (p) has no eigenvalues on the unit circle. One example of a map whose only fixed point is hyper ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hyperbolic Set
In dynamical systems theory, a subset Λ of a smooth manifold ''M'' is said to have a hyperbolic structure with respect to a smooth map ''f'' if its tangent bundle may be split into two invariant subbundles, one of which is contracting and the other is expanding under ''f'', with respect to some Riemannian metric on ''M''. An analogous definition applies to the case of flows. In the special case when the entire manifold ''M'' is hyperbolic, the map ''f'' is called an Anosov diffeomorphism. The dynamics of ''f'' on a hyperbolic set, or hyperbolic dynamics, exhibits features of local structural stability and has been much studied, cf. Axiom A. Definition Let ''M'' be a compact smooth manifold, ''f'': ''M'' → ''M'' a diffeomorphism, and ''Df'': ''TM'' → ''TM'' the differential of ''f''. An ''f''-invariant subset Λ of ''M'' is said to be hyperbolic, or to have a hyperbolic structure, if the restriction to Λ of the tangent bundle of ''M'' admits a s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Neil Fenichel
Neil is a masculine name of Gaelic and Irish origin. The name is an anglicisation of the Irish ''Niall'' which is of disputed derivation. The Irish name may be derived from words meaning "cloud", "passionate", "victory", "honour" or "champion".. As a surname, Neil is traced back to Niall of the Nine Hostages who was an Irish king and eponymous ancestor of the Uí Néill and MacNeil kindred. Most authorities cite the meaning of Neil in the context of a surname as meaning "champion". Origins The Gaelic name was adopted by the Vikings and taken to Iceland as ''Njáll'' (see Nigel). From Iceland it went via Norway, Denmark, and Normandy to England. The name also entered Northern England and Yorkshire directly from Ireland, and from Norwegian settlers. ''Neal'' or ''Neall'' is the Middle English form of ''Nigel''. As a first name, during the Middle Ages, the Gaelic name of Irish origins was popular in Ireland and later Scotland. During the 20th century ''Neil'' began to be used in En ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compact Space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topologic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Smooth Manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible (namely, the transition from one chart to another is differentiable), then computations done in one chart are valid in any other differentiable chart. In formal terms, a differentiable manifold is a topological manifold with a globally defined differential structure. Any topological manifold can be given a differential structure locally by using the homeomorphisms in its atlas and the standard differential structure on a vector space. To induce a global differential structure on the local coordinate systems induced by the homeomorphisms, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diffeomorphism
In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable. Definition Given two manifolds M and N, a differentiable map f \colon M \rightarrow N is called a diffeomorphism if it is a bijection and its inverse f^ \colon N \rightarrow M is differentiable as well. If these functions are r times continuously differentiable, f is called a C^r-diffeomorphism. Two manifolds M and N are diffeomorphic (usually denoted M \simeq N) if there is a diffeomorphism f from M to N. They are C^r-diffeomorphic if there is an r times continuously differentiable bijective map between them whose inverse is also r times continuously differentiable. Diffeomorphisms of subsets of manifolds Given a subset X of a manifold M and a subset Y of a manifold N, a function f:X\to Y is said to be smooth if for all p in X there is a neighbor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pushforward (differential)
In differential geometry, pushforward is a linear approximation of smooth maps on tangent spaces. Suppose that is a smooth map between smooth manifolds; then the differential of ''φ, d\varphi_x,'' at a point ''x'' is, in some sense, the best linear approximation of ''φ'' near ''x''. It can be viewed as a generalization of the total derivative of ordinary calculus. Explicitly, the differential is a linear map from the tangent space of ''M'' at ''x'' to the tangent space of ''N'' at ''φ''(''x''), d\varphi_x: T_xM \to T_N. Hence it can be used to ''push'' tangent vectors on ''M'' ''forward'' to tangent vectors on ''N''. The differential of a map ''φ'' is also called, by various authors, the derivative or total derivative of ''φ''. Motivation Let \varphi: U \to V be a smooth map from an open subset U of \R^m to an open subset V of \R^n. For any point x in U, the Jacobian of \varphi at x (with respect to the standard coordinates) is the matrix representation of the total d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Submanifold
In mathematics, a submanifold of a manifold ''M'' is a subset ''S'' which itself has the structure of a manifold, and for which the inclusion map satisfies certain properties. There are different types of submanifolds depending on exactly which properties are required. Different authors often have different definitions. Formal definition In the following we assume all manifolds are differentiable manifolds of class ''C''''r'' for a fixed , and all morphisms are differentiable of class ''C''''r''. Immersed submanifolds An immersed submanifold of a manifold ''M'' is the image ''S'' of an immersion map ; in general this image will not be a submanifold as a subset, and an immersion map need not even be injective (one-to-one) – it can have self-intersections. More narrowly, one can require that the map be an injection (one-to-one), in which we call it an injective immersion, and define an immersed submanifold to be the image subset ''S'' together with a topology and differentia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stable Manifold
In mathematics, and in particular the study of dynamical systems, the idea of ''stable and unstable sets'' or stable and unstable manifolds give a formal mathematical definition to the general notions embodied in the idea of an attractor or repellor. In the case of hyperbolic dynamics, the corresponding notion is that of the hyperbolic set. Physical example The gravitational tidal forces acting on the rings of Saturn provide an easy-to-visualize physical example. The tidal forces flatten the ring into the equatorial plane, even as they stretch it out in the radial direction. Imagining the rings to be sand or gravel particles ("dust") in orbit around Saturn, the tidal forces are such that any perturbations that push particles above or below the equatorial plane results in that particle feeling a restoring force, pushing it back into the plane. Particles effectively oscillate in a harmonic well, damped by collisions. The stable direction is perpendicular to the ring. The unstable di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riemannian Metric
In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g''''p'' on the tangent space ''T''''p''''M'' at each point ''p''. The family ''g''''p'' of inner products is called a Riemannian metric (or Riemannian metric tensor). Riemannian geometry is the study of Riemannian manifolds. A common convention is to take ''g'' to be smooth, which means that for any smooth coordinate chart on ''M'', the ''n''2 functions :g\left(\frac,\frac\right):U\to\mathbb are smooth functions. These functions are commonly designated as g_. With further restrictions on the g_, one could also consider Lipschitz Riemannian metrics or measurable Riemannian metrics, among many other possibilities. A Riemannian metric (tensor) makes it possible to define several geometric notions on a Riemannian manifold, such as angle at an intersection, length of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stable Manifold
In mathematics, and in particular the study of dynamical systems, the idea of ''stable and unstable sets'' or stable and unstable manifolds give a formal mathematical definition to the general notions embodied in the idea of an attractor or repellor. In the case of hyperbolic dynamics, the corresponding notion is that of the hyperbolic set. Physical example The gravitational tidal forces acting on the rings of Saturn provide an easy-to-visualize physical example. The tidal forces flatten the ring into the equatorial plane, even as they stretch it out in the radial direction. Imagining the rings to be sand or gravel particles ("dust") in orbit around Saturn, the tidal forces are such that any perturbations that push particles above or below the equatorial plane results in that particle feeling a restoring force, pushing it back into the plane. Particles effectively oscillate in a harmonic well, damped by collisions. The stable direction is perpendicular to the ring. The unstable di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Center Manifold
In the mathematics of evolving systems, the concept of a center manifold was originally developed to determine stability of degenerate equilibria. Subsequently, the concept of center manifolds was realised to be fundamental to mathematical modelling. Center manifolds play an important role in bifurcation theory because interesting behavior takes place on the center manifold and in multiscale mathematics because the long time dynamics of the micro-scale often are attracted to a relatively simple center manifold involving the coarse scale variables. Informal example Saturn's rings provide a rough example of the center manifold of the tidal forces acting on particles within the rings. Tidal forces have a characteristic "compress and stretch" action on bodies, with the compressing direction defining the stable manifold, the stretching direction defining the unstable manifold, and the neutral direction being the center manifold. In the case of Saturn, a particle in orbit above or bel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]