Normal-exponential-gamma Distribution
   HOME
*





Normal-exponential-gamma Distribution
In probability theory and statistics, the normal-exponential-gamma distribution (sometimes called the NEG distribution) is a three-parameter family of continuous probability distributions. It has a location parameter \mu, scale parameter \theta and a shape parameter k . Probability density function The probability density function (pdf) of the normal-exponential-gamma distribution is proportional to :f(x;\mu, k,\theta) \propto \expD_\left(\frac\right), where ''D'' is a parabolic cylinder function.http://www.newton.ac.uk/programmes/SCB/seminars/121416154.html As for the Laplace distribution, the pdf of the NEG distribution can be expressed as a mixture of normal distributions, :f(x;\mu, k,\theta)=\int_0^\infty\int_0^\infty\ \mathrm(x, \mu, \sigma^2)\mathrm(\sigma^2, \psi)\mathrm(\psi, k, 1/\theta^2) \, d\sigma^2 \, d\psi, where, in this notation, the distribution-names should be interpreted as meaning the density functions of those distributions. Within this scale mixt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Location Parameter
In geography, location or place are used to denote a region (point, line, or area) on Earth's surface or elsewhere. The term ''location'' generally implies a higher degree of certainty than ''place'', the latter often indicating an entity with an ambiguous boundary, relying more on human or social attributes of place identity and sense of place than on geometry. Types Locality A locality, settlement, or populated place is likely to have a well-defined name but a boundary that is not well defined varies by context. London, for instance, has a legal boundary, but this is unlikely to completely match with general usage. An area within a town, such as Covent Garden in London, also almost always has some ambiguity as to its extent. In geography, location is considered to be more precise than "place". Relative location A relative location, or situation, is described as a displacement from another site. An example is "3 miles northwest of Seattle". Absolute location An absolute lo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compound Probability Distribution
In probability and statistics, a compound probability distribution (also known as a mixture distribution or contagious distribution) is the probability distribution that results from assuming that a random variable is distributed according to some parametrized distribution, with (some of) the parameters of that distribution themselves being random variables. If the parameter is a scale parameter, the resulting mixture is also called a scale mixture. The compound distribution ("unconditional distribution") is the result of marginalizing (integrating) over the ''latent'' random variable(s) representing the parameter(s) of the parametrized distribution ("conditional distribution"). Definition A compound probability distribution is the probability distribution that results from assuming that a random variable X is distributed according to some parametrized distribution F with an unknown parameter \theta that is again distributed according to some other distribution G. The resulting d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compound Probability Distribution
In probability and statistics, a compound probability distribution (also known as a mixture distribution or contagious distribution) is the probability distribution that results from assuming that a random variable is distributed according to some parametrized distribution, with (some of) the parameters of that distribution themselves being random variables. If the parameter is a scale parameter, the resulting mixture is also called a scale mixture. The compound distribution ("unconditional distribution") is the result of marginalizing (integrating) over the ''latent'' random variable(s) representing the parameter(s) of the parametrized distribution ("conditional distribution"). Definition A compound probability distribution is the probability distribution that results from assuming that a random variable X is distributed according to some parametrized distribution F with an unknown parameter \theta that is again distributed according to some other distribution G. The resulting d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Variable Selection
In machine learning and statistics, feature selection, also known as variable selection, attribute selection or variable subset selection, is the process of selecting a subset of relevant features (variables, predictors) for use in model construction. Feature selection techniques are used for several reasons: :* simplification of models to make them easier to interpret by researchers/users, :* shorter training times, :* to avoid the curse of dimensionality, :*improve data's compatibility with a learning model class, :*encode inherent symmetries present in the input space. The central premise when using a feature selection technique is that the data contains some features that are either ''redundant'' or ''irrelevant'', and can thus be removed without incurring much loss of information. ''Redundant'' and ''irrelevant'' are two distinct notions, since one relevant feature may be redundant in the presence of another relevant feature with which it is strongly correlated. Feature sele ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lomax Distribution
The Lomax distribution, conditionally also called the Pareto Type II distribution, is a heavy-tail probability distribution used in business, economics, actuarial science, queueing theory and Internet traffic modeling. It is named after K. S. Lomax. It is essentially a Pareto distribution that has been shifted so that its support begins at zero. Characterization Probability density function The probability density function (pdf) for the Lomax distribution is given by :p(x) = \leftright, \qquad x \geq 0, with shape parameter \alpha > 0 and scale parameter \lambda > 0. The density can be rewritten in such a way that more clearly shows the relation to the Pareto Type I distribution. That is: :p(x) = . Non-central moments The \nuth non-central moment E\left ^\nu\right/math> exists only if the shape parameter \alpha strictly exceeds \nu, when the moment has the value :E\left(X^\nu\right) = \frac Related distributions Relation to the Pareto distribution The Lo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gamma Distribution
In probability theory and statistics, the gamma distribution is a two- parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-square distribution are special cases of the gamma distribution. There are two equivalent parameterizations in common use: #With a shape parameter k and a scale parameter \theta. #With a shape parameter \alpha = k and an inverse scale parameter \beta = 1/ \theta , called a rate parameter. In each of these forms, both parameters are positive real numbers. The gamma distribution is the maximum entropy probability distribution (both with respect to a uniform base measure and a 1/x base measure) for a random variable X for which E 'X''= ''kθ'' = ''α''/''β'' is fixed and greater than zero, and E n(''X'')= ''ψ''(''k'') + ln(''θ'') = ''ψ''(''α'') − ln(''β'') is fixed (''ψ'' is the digamma function). Definitions The parameterization with ''k'' and ''θ'' appears to be more common ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exponential Distribution
In probability theory and statistics, the exponential distribution is the probability distribution of the time between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate. It is a particular case of the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis of Poisson point processes it is found in various other contexts. The exponential distribution is not the same as the class of exponential families of distributions. This is a large class of probability distributions that includes the exponential distribution as one of its members, but also includes many other distributions, like the normal, binomial, gamma, and Poisson distributions. Definitions Probability density function The probability density function (pdf) of an exponential distribution is : f(x;\lambda) = \begin \l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Normal Distribution
In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu is the mean or expectation of the distribution (and also its median and mode), while the parameter \sigma is its standard deviation. The variance of the distribution is \sigma^2. A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate. Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not known. Their importance is partly due to the central limit theorem. It states that, under some conditions, the average of many samples (observations) of a random variable with finite mean and variance is itself a random variable—whose distribution converges to a normal dist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Laplace Distribution
In probability theory and statistics, the Laplace distribution is a continuous probability distribution named after Pierre-Simon Laplace. It is also sometimes called the double exponential distribution, because it can be thought of as two exponential distributions (with an additional location parameter) spliced together along the abscissa, although the term is also sometimes used to refer to the Gumbel distribution. The difference between two independent identically distributed exponential random variables is governed by a Laplace distribution, as is a Brownian motion evaluated at an exponentially distributed random time. Increments of Laplace motion or a variance gamma process evaluated over the time scale also have a Laplace distribution. Definitions Probability density function A random variable has a \textrm(\mu, b) distribution if its probability density function is :f(x\mid\mu,b) = \frac \exp \left( -\frac \right) \,\! Here, \mu is a location parameter and b > ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Shape Parameter
In probability theory and statistics, a shape parameter (also known as form parameter) is a kind of numerical parameter of a parametric family of probability distributionsEveritt B.S. (2002) Cambridge Dictionary of Statistics. 2nd Edition. CUP. that is neither a location parameter nor a scale parameter (nor a function of these, such as a rate parameter). Such a parameter must affect the ''shape'' of a distribution rather than simply shifting it (as a location parameter does) or stretching/shrinking it (as a scale parameter does). For example, "peakedness" refers to how round the main peak is. Estimation Many estimators measure location or scale; however, estimators for shape parameters also exist. Most simply, they can be estimated in terms of the higher moments, using the method of moments, as in the ''skewness'' (3rd moment) or ''kurtosis'' (4th moment), if the higher moments are defined and finite. Estimators of shape often involve higher-order statistics (non-linear fun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parabolic Cylinder Function
In mathematics, the parabolic cylinder functions are special functions defined as solutions to the differential equation This equation is found when the technique of separation of variables is used on Laplace's equation when expressed in parabolic cylindrical coordinates. The above equation may be brought into two distinct forms (A) and (B) by completing the square and rescaling , called H. F. Weber's equations: and If f(a,z) is a solution, then so are f(a,-z), f(-a,iz)\textf(-a,-iz). If f(a,z)\, is a solution of equation (), then f(-ia,ze^) is a solution of (), and, by symmetry, f(-ia,-ze^), f(ia,-ze^)\textf(ia,ze^) are also solutions of (). Solutions There are independent even and odd solutions of the form (). These are given by (following the notation of Abramowitz and Stegun (1965)): y_1(a;z) = \exp(-z^2/4) \;_1F_1 \left(\tfrac12a+\tfrac14; \; \tfrac12\; ; \; \frac\right)\,\,\,\,\,\, (\mathrm) and y_2(a;z) = z\exp(-z^2/4) \;_1F_1 \left(\tfrac12a+\tfrac34; \; \tfrac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Probability Density Function
In probability theory, a probability density function (PDF), or density of a continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a ''relative likelihood'' that the value of the random variable would be close to that sample. Probability density is the probability per unit length, in other words, while the ''absolute likelihood'' for a continuous random variable to take on any particular value is 0 (since there is an infinite set of possible values to begin with), the value of the PDF at two different samples can be used to infer, in any particular draw of the random variable, how much more likely it is that the random variable would be close to one sample compared to the other sample. In a more precise sense, the PDF is used to specify the probability of the random variable falling ''within a particular range of values'', as opposed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]