HOME
*





Non-dictatorship
In social choice theory, a dictatorship mechanism is a rule by which, among all possible alternatives, the results of voting mirror a single pre-determined person's preferences, without consideration of the other voters. Dictatorship by itself is not considered a good mechanism in practice, but it is theoretically important: by Arrow's impossibility theorem, when there are at least three alternatives, dictatorship is the only ranked voting electoral system that satisfies '' unrestricted domain'', ''Pareto efficiency'', and ''independence of irrelevant alternatives''. Similarly, by Gibbard's theorem, when there are at least three alternatives, dictatorship is the only ''strategyproof'' rule. Non-dictatorship is a property of more common voting rules, in which the results are influenced by the preferences of all individuals. This property is satisfied if there is no single voter ''i'' with the individual preference order P, such that P is always the societal ("winning") preference ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arrow's Impossibility Theorem
Arrow's impossibility theorem, the general possibility theorem or Arrow's paradox is an impossibility theorem in social choice theory that states that when voters have three or more distinct alternatives (options), no ranked voting electoral system can convert the ranked preferences of individuals into a community-wide (complete and transitive) ranking while also meeting the specified set of criteria: '' unrestricted domain'', '' non-dictatorship'', ''Pareto efficiency'', and ''independence of irrelevant alternatives''. The theorem is often cited in discussions of voting theory as it is further interpreted by the Gibbard–Satterthwaite theorem. The theorem is named after economist and Nobel laureate Kenneth Arrow, who demonstrated the theorem in his doctoral thesis and popularized it in his 1951 book ''Social Choice and Individual Values''. The original paper was titled "A Difficulty in the Concept of Social Welfare". In short, the theorem states that no rank-order electoral syst ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Social Choice Theory
Social choice theory or social choice is a theoretical framework for analysis of combining individual opinions, preferences, interests, or welfares to reach a ''collective decision'' or ''social welfare'' in some sense.Amartya Sen (2008). "Social Choice,". ''The New Palgrave Dictionary of Economics'', 2nd EditionAbstract & TOC./ref> Whereas choice theory is concerned with individuals making choices based on their preferences, social choice theory is concerned with how to translate the preferences of individuals into the preferences of a group. A non-theoretical example of a collective decision is enacting a law or set of laws under a constitution. Another example is voting, where individual preferences over candidates are collected to elect a person that best represents the group's preferences. Social choice blends elements of welfare economics and public choice theory. It is methodologically individualistic, in that it aggregates preferences and behaviors of individual member ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Random Ballot
The random ballot, single stochastic vote, or lottery voting is an electoral system in which an election is decided on the basis of a single randomly selected ballot. It is closely related to random dictatorship; the latter is a general rule for social choice, while random ballot is an application of this general rule for electing candidates in multi-constituency bodies. Whilst appearing superficially chaotic, the system has the potential to retain the most attractive characteristics of both first past the post and proportional representation systems in elections to multi-constituency bodies. Random dictatorship was first described in 1977 by Allan Gibbard. Its application to elections was first described in 1984 by Akhil Reed Amar,. Method and properties In an election or referendum, the ballot of a single voter is selected at random, and that ballot decides the result of the election. In this way, each candidate or option wins with a probability exactly equal to the fraction ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Voting Theory
Social choice theory or social choice is a theoretical framework for analysis of combining individual opinions, preferences, interests, or welfares to reach a ''collective decision'' or ''social welfare'' in some sense.Amartya Sen (2008). "Social Choice,". ''The New Palgrave Dictionary of Economics'', 2nd EditionAbstract & TOC./ref> Whereas choice theory is concerned with individuals making choices based on their preferences, social choice theory is concerned with how to translate the preferences of individuals into the preferences of a group. A non-theoretical example of a collective decision is enacting a law or set of laws under a constitution. Another example is voting, where individual preferences over candidates are collected to elect a person that best represents the group's preferences. Social choice blends elements of welfare economics and public choice theory. It is methodologically individualistic, in that it aggregates preferences and behaviors of individual member ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fractional Approval Voting
Fractional approval voting is an electoral system using approval ballots (each voter selects one or more candidate alternatives), in which the outcome is ''fractional'': for each alternative ''j'' there is a fraction ''pj'' between 0 and 1, such that the sum of ''pj'' is 1. It can be seen as a generalization of approval voting: in the latter, one candidate wins (''pj'' = 1) and the other candidates lose (''pj'' = 0). The fractions ''pj'' can be interpreted in various ways, depending on the setting. Examples are: * ''Time sharing'': each alternative ''j'' is implemented a fraction ''pj'' of the time (e.g. each candidate ''j'' serves in office a fraction ''pj'' of the term). * ''Budget'' ''distribution'': each alternative ''j'' receives a fraction ''pj'' of the total budget.A video of the EC'21 conference talk/ref> * ''Probabilities'': after the fractional results are computed, there is a lottery for selecting a single candidate, where each candidate ''j'' is elected with probabili ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parameterized Complexity
In computer science, parameterized complexity is a branch of computational complexity theory that focuses on classifying computational problems according to their inherent difficulty with respect to ''multiple'' parameters of the input or output. The complexity of a problem is then measured as a function of those parameters. This allows the classification of NP-hard problems on a finer scale than in the classical setting, where the complexity of a problem is only measured as a function of the number of bits in the input. The first systematic work on parameterized complexity was done by . Under the assumption that P â‰  NP, there exist many natural problems that require superpolynomial running time when complexity is measured in terms of the input size only, but that are computable in a time that is polynomial in the input size and exponential or worse in a parameter . Hence, if is fixed at a small value and the growth of the function over is relatively small then such p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


♯P
In computational complexity theory, the complexity class #P (pronounced "sharp P" or, sometimes "number P" or "hash P") is the set of the counting problems associated with the decision problems in the set NP. More formally, #P is the class of function problems of the form "compute ''f''(''x'')", where ''f'' is the number of accepting paths of a nondeterministic Turing machine running in polynomial time. Unlike most well-known complexity classes, it is not a class of decision problems but a class of function problems. The most difficult, representative problems of this class are #P-complete. Relation to decision problems An NP decision problem is often of the form "Are there any solutions that satisfy certain constraints?" For example: * Are there any subsets of a list of integers that add up to zero? (subset sum problem) * Are there any Hamiltonian cycles in a given graph with cost less than 100? (traveling salesman problem) * Are there any variable assignments that satisfy a g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isabelle (proof Assistant)
The Isabelle automated theorem prover is a higher-order logic (HOL) theorem prover, written in Standard ML and Scala. As an LCF-style theorem prover, it is based on a small logical core (kernel) to increase the trustworthiness of proofs without requiring yet supporting explicit proof objects. Isabelle is available inside a flexible system framework allowing for logically safe extensions, which comprise both theories as well as implementations for code-generation, documentation, and specific support for a variety of formal methods. It can be seen as an IDE for formal methods. In recent years, a substantial number of theories and system extensions have been collected in the Isabelle ''Archive of Formal Proofs'' (Isabelle AFP) Isabelle was named by Lawrence Paulson after Gérard Huet's daughter. The Isabelle theorem prover is free software, released under the revised BSD license. Features Isabelle is generic: it provides a meta-logic (a weak type theory), which is used to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Interactive Theorem Prover
In computer science and mathematical logic, a proof assistant or interactive theorem prover is a software tool to assist with the development of formal proofs by human-machine collaboration. This involves some sort of interactive proof editor, or other interface, with which a human can guide the search for proofs, the details of which are stored in, and some steps provided by, a computer. System comparison * ACL2 â€“ a programming language, a first-order logical theory, and a theorem prover (with both interactive and automatic modes) in the Boyer–Moore tradition. * Coq â€“ Allows the expression of mathematical assertions, mechanically checks proofs of these assertions, helps to find formal proofs, and extracts a certified program from the constructive proof of its formal specification. * HOL theorem provers â€“ A family of tools ultimately derived from the LCF theorem prover. In these systems the logical core is a library of their programming language. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SMT Solver
In computer science and mathematical logic, satisfiability modulo theories (SMT) is the problem of determining whether a mathematical formula is satisfiable. It generalizes the Boolean satisfiability problem (SAT) to more complex formulas involving real numbers, integers, and/or various data structures such as lists, arrays, bit vectors, and strings. The name is derived from the fact that these expressions are interpreted within ("modulo") a certain formal theory in first-order logic with equality (often disallowing quantifiers). SMT solvers are tools which aim to solve the SMT problem for a practical subset of inputs. SMT solvers such as Z3 and cvc5 have been used as a building block for a wide range of applications across computer science, including in automated theorem proving, program analysis, program verification, and software testing. Since Boolean satisfiability is already NP-complete, the SMT problem is typically NP-hard, and for many theories it is undecidable. Resea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Independence Of Irrelevant Alternatives
The independence of irrelevant alternatives (IIA), also known as binary independence or the independence axiom, is an axiom of decision theory and various social sciences. The term is used in different connotation in several contexts. Although it always attempts to provide an account of rational individual behavior or aggregation of individual preferences, the exact formulation differs widely in both language and exact content. Perhaps the easiest way to understand the axiom is how it pertains to casting a ballot. There the axiom says that if Charlie (the irrelevant alternative) enters a race between Alice and Bob, with Alice (leader) liked better than Bob (runner-up), then the individual voter who likes Charlie less than Alice will not switch his vote from Alice to Bob. Because of this, a violation of IIA is commonly referred to as the "spoiler effect": support for Charlie "spoils" the election for Alice, while it "logically" should not have. After all, Alice ''was'' liked better t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stochastic Dominance
Stochastic dominance is a partial order between random variables. It is a form of stochastic ordering. The concept arises in decision theory and decision analysis in situations where one gamble (a probability distribution over possible outcomes, also known as prospects) can be ranked as superior to another gamble for a broad class of decision-makers. It is based on shared preferences regarding sets of possible outcomes and their associated probabilities. Only limited knowledge of preferences is required for determining dominance. Risk aversion is a factor only in second order stochastic dominance. Stochastic dominance does not give a total order, but rather only a partial order: for some pairs of gambles, neither one stochastically dominates the other, since different members of the broad class of decision-makers will differ regarding which gamble is preferable without them generally being considered to be equally attractive. Throughout the article, \rho, \nu stand for probabil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]