Nimber
In mathematics, the nimbers, also called Grundy numbers (not to be confused with Grundy chromatic numbers), are introduced in combinatorial game theory, where they are defined as the values of heaps in the game Nim. The nimbers are the ordinal numbers endowed with ''nimber addition'' and ''nimber multiplication'', which are distinct from ordinal addition and ordinal multiplication. Because of the Sprague–Grundy theorem which states that every impartial game is equivalent to a Nim heap of a certain size, nimbers arise in a much larger class of impartial games. They may also occur in partisan games like Domineering. The nimber addition and multiplication operations are associative and commutative. Each nimber is its own additive inverse. In particular for some pairs of ordinals, their nimber sum is smaller than either addend. The minimum excludant operation is applied to sets of nimbers. Definition As a class, nimbers are indexed by ordinal numbers, and form a sub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Minimum Excludant
In mathematics, the mex ("minimum excluded value") of a subset of a well-ordered set is the smallest value from the whole set that does not belong to the subset. That is, it is the minimum value of the complement set. Beyond sets, subclasses of well-ordered classes have minimum excluded values. Minimum excluded values of subclasses of the ordinal numbers are used in combinatorial game theory to assign nim-values to impartial games. According to the Sprague–Grundy theorem, the nim-value of a game position is the minimum excluded value of the class of values of the positions that can be reached in a single move from the given position. Minimum excluded values are also used in graph theory, in greedy coloring algorithms. These algorithms typically choose an ordering of the vertices of a graph and choose a numbering of the available vertex colors. They then consider the vertices in order, for each vertex choosing its color to be the minimum excluded value of the set of colors al ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sprague–Grundy Theorem
In combinatorial game theory, the Sprague–Grundy theorem states that every impartial game under the normal play convention is equivalent to a one-heap game of nim, or to an infinite generalization of nim. It can therefore be represented as a natural number, the size of the heap in its equivalent game of nim, as an ordinal number in the infinite generalization, or alternatively as a nimber, the value of that one-heap game in an algebraic system whose addition operation combines multiple heaps to form a single equivalent heap in nim. The Grundy value or nim-value of any impartial game is the unique nimber that the game is equivalent to. In the case of a game whose positions are indexed by the natural numbers (like nim itself, which is indexed by its heap sizes), the sequence of nimbers for successive positions of the game is called the nim-sequence of the game. The Sprague–Grundy theorem and its proof encapsulate the main results of a theory discovered independently b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Impartial Game
In combinatorial game theory, an impartial game is a game in which the allowable moves depend only on the position and not on which of the two players is currently moving, and where the payoffs are symmetric. In other words, the only difference between player 1 and player 2 is that player 1 goes first. The game is played until a terminal position is reached. A terminal position is one from which no moves are possible. Then one of the players is declared the winner and the other the loser. Furthermore, impartial games are played with perfect information and no chance moves, meaning all information about the game and operations for both players are visible to both players. Impartial games include Nim, Sprouts, Kayles, Quarto, Cram, Chomp, Subtract a square, Notakto, and poset games. Go and chess are not impartial, as each player can only place or move pieces of their own color. Games such as poker, dice or dominos are not impartial games as they rely on chance. Impartial ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ordinal Addition
In the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation. Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the result of the operation or by using transfinite recursion. Cantor normal form provides a standardized way of writing ordinals. In addition to these usual ordinal operations, there are also the "natural" arithmetic of ordinals and the nimber operations. Addition The sum of two well-ordered sets and is the ordinal representing the variant of lexicographical order with least significant position first, on the union of the Cartesian products and . This way, every element of is smaller than every element of , comparisons within keep the order they already have, and likewise for comparisons within . The definition of addition can also be given by transfinite recursion on . When the right ad ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ordinal Multiplication
In the Mathematics, mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation. Each can be defined in essentially two different ways: either by constructing an explicit well-order, well-ordered set that represents the result of the operation or by using transfinite recursion. Cantor normal form provides a standardized way of writing ordinals. In addition to these usual ordinal operations, there are also the #Natural operations, "natural" arithmetic of ordinals and the #Nimber arithmetic, nimber operations. Addition The sum of two well-ordered sets and is the ordinal representing the variant of lexicographical order with least significant position first, on the union of the Cartesian products and . This way, every element of is smaller than every element of , comparisons within keep the order they already have, and likewise for comparisons within . The definition of addition ca ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Combinatorial Game Theory
Combinatorial game theory is a branch of mathematics and theoretical computer science that typically studies sequential games with perfect information. Research in this field has primarily focused on two-player games in which a ''position'' evolves through alternating ''moves'', each governed by well-defined rules, with the aim of achieving a specific winning condition. Unlike game theory, economic game theory, combinatorial game theory generally avoids the study of games of chance or games involving imperfect information, preferring instead games in which the current state and the full set of available moves are always known to both players. However, as mathematical techniques develop, the scope of analyzable games expands, and the boundaries of the field continue to evolve. Authors typically define the term "game" at the outset of academic papers, with definitions tailored to the specific game under analysis rather than reflecting the field’s full scope. Combinatorics, Comb ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ordinal Number
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally using linearly ordered greek letter variables that include the natural numbers and have the property that every set of ordinals has a least or "smallest" element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number \omega (omega) to be the least element that is greater than every natural number, along with ordinal numbers , , etc., which are even greater than . A linear order such that every non-empty subset has a least element is called a well-order. The axiom of choice implies that every set can be well-orde ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Partisan Game
In combinatorial game theory, a game is partisan (sometimes partizan) if it is not impartial. That is, some moves are available to one player and not to the other, or the payoffs are not symmetric. Most games are partisan. For example, in chess, only one player can move the white pieces. More strongly, when analyzed using combinatorial game theory, many chess positions have values that cannot be expressed as the value of an impartial game, for instance when one side has a number of extra tempos that can be used to put the other side into zugzwang. Partisan games are more difficult to analyze than impartial games, as the Sprague–Grundy theorem In combinatorial game theory, the Sprague–Grundy theorem states that every impartial game under the normal play convention is equivalent to a one-heap game of nim, or to an infinite generalization of nim. It can therefore be represented ... does not apply. However, the application of combinatorial game theory to partisan games al ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Field (mathematics)
In mathematics, a field is a set (mathematics), set on which addition, subtraction, multiplication, and division (mathematics), division are defined and behave as the corresponding operations on rational number, rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as field of rational functions, fields of rational functions, algebraic function fields, algebraic number fields, and p-adic number, ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many element (set), elements. The theory of fields proves that angle trisection and squaring the circle cannot be done with a compass and straighte ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Grundy Number
In graph theory, the Grundy number or Grundy chromatic number of an undirected graph is the maximum number of colors that can be used by a greedy coloring strategy that considers the vertices of the graph in sequence and assigns each vertex its first available color, using a vertex ordering chosen to use as many colors as possible. Grundy numbers are named after P. M. Grundy, who studied an analogous concept for directed graphs in 1939. The undirected version was introduced by .. Examples The path graph with four vertices provides the simplest example of a graph whose chromatic number differs from its Grundy number. This graph can be colored with two colors, but its Grundy number is three: if the two endpoints of the path are colored first, the greedy coloring algorithm will use three colors for the whole graph. The complete bipartite graphs are the only connected graphs whose Grundy number is two. All other connected graphs contain either a triangle or a four-vertex path, whi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Commutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a property of arithmetic, e.g. or , the property can also be used in more advanced settings. The name is needed because there are operations, such as division (mathematics), division and subtraction, that do not have it (for example, ); such operations are ''not'' commutative, and so are referred to as noncommutative operations. The idea that simple operations, such as the multiplication (mathematics), multiplication and addition of numbers, are commutative was for many centuries implicitly assumed. Thus, this property was not named until the 19th century, when new algebraic structures started to be studied. Definition A binary operation * on a Set (mathematics), set ''S'' is ''commutative'' if x * y = y * x for all x,y \in S. An operat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |