HOME
*



picture info

Neoblast
Neoblasts (ˈniːəʊˌblæst) are non-differentiated cells found in flatworms called planarians. Neoblasts make up about 30 percent of all cells in planaria. Neoblasts give planarians an extraordinary ability to regenerate lost body parts. A planarian split lengthwise or crosswise will regenerate into two separate individuals. Characteristics A neoblast is a non-differentiated cell found in planarians and are responsible for regeneration. Neoblasts have little cytoplasm and a huge nucleus which is a characteristic of pluripotent cells. They are the only dividing and growing cells in planaria. This mitotic characteristic is how they are detected by adding Bromodeoxyuridine (BrdU) and staining with anti-BrdU. They have a size between 5 µm to 8 µm in diameter. Neoblasts represent about 30 percent of all cells in planaria. They are not present in the anterior, posterior or pharynx. Neoblast form blastema capable of growth and Regeneration (biology), regeneration into Org ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Regeneration (biology)
In biology, regeneration is the process of renewal, restoration, and tissue growth that makes genomes, cells, organisms, and ecosystems resilient to natural fluctuations or events that cause disturbance or damage. Every species is capable of regeneration, from bacteria to humans. Regeneration can either be complete where the new tissue is the same as the lost tissue, or incomplete where after the necrotic tissue comes fibrosis. At its most elementary level, regeneration is mediated by the molecular processes of gene regulation and involves the cellular processes of cell proliferation, morphogenesis and cell differentiation. Regeneration in biology, however, mainly refers to the morphogenic processes that characterize the phenotypic plasticity of traits allowing multi-cellular organisms to repair and maintain the integrity of their physiological and morphological states. Above the genetic level, regeneration is fundamentally regulated by asexual cellular processes. Regeneration ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Blastema
A blastema (Greek ''βλάστημα'', "offspring") is a mass of cells capable of growth and regeneration into organs or body parts. The changing definition of the word "blastema" has been reviewed by Holland (2021). A broad survey of how blastema has been used over time brings to light a somewhat involved history. The word entered the biomedical vocabulary in 1799 to designate a sinister acellular slime that was the starting point for the growth of cancers, themselves, at the time, thought to be acellular, as reviewed by Hajdu (2011, Cancer 118: 1155-1168). Then, during the early nineteenth century, the definition broadened to include growth zones (still considered acellular) in healthy, normally developing plant and animal embryos. Contemporaneously, cancer specialists dropped the term from their vocabulary, perhaps because they felt a term connoting a state of health and normalcy was not appropriate for describing a pathological condition. During the middle decades of the nine ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Blastema
A blastema (Greek ''βλάστημα'', "offspring") is a mass of cells capable of growth and regeneration into organs or body parts. The changing definition of the word "blastema" has been reviewed by Holland (2021). A broad survey of how blastema has been used over time brings to light a somewhat involved history. The word entered the biomedical vocabulary in 1799 to designate a sinister acellular slime that was the starting point for the growth of cancers, themselves, at the time, thought to be acellular, as reviewed by Hajdu (2011, Cancer 118: 1155-1168). Then, during the early nineteenth century, the definition broadened to include growth zones (still considered acellular) in healthy, normally developing plant and animal embryos. Contemporaneously, cancer specialists dropped the term from their vocabulary, perhaps because they felt a term connoting a state of health and normalcy was not appropriate for describing a pathological condition. During the middle decades of the nine ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schmidtea Mediterranea
''Schmidtea mediterranea'' is a freshwater triclad that lives in southern Europe and Tunisia. It is a model for regeneration, stem cells and development of tissues such as the brain and germline. Distribution ''Schmidtea mediterranea'' is found in some coastal areas and islands in the western Mediterranean (Catalonia, Menorca, Mallorca, Corsica, Sardinia Sardinia ( ; it, Sardegna, label=Italian, Corsican and Tabarchino ; sc, Sardigna , sdc, Sardhigna; french: Sardaigne; sdn, Saldigna; ca, Sardenya, label=Algherese and Catalan) is the second-largest island in the Mediterranean Sea, after ..., Sicily and Tunisia).Benazzi M, Baguñà J, Ballester R, Puccinelli I, Papa RD: Further Contribution to the Taxonomy of the ''Dugesia lugubris-polychroa Group'' with Description of ''Dugesia mediterranea'' n. sp. (Tricladida, Paludicola). Bolletino di zoologia 1975, 42(1):81-89.Ribas M: Cariologia, sistematica i biogeografia de les Planaries d'aigues dolces al Països Catalans. 199 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

RNA Interference
RNA interference (RNAi) is a biological process in which RNA molecules are involved in sequence-specific suppression of gene expression by double-stranded RNA, through translational or transcriptional repression. Historically, RNAi was known by other names, including ''co-suppression'', ''post-transcriptional gene silencing'' (PTGS), and ''quelling''. The detailed study of each of these seemingly different processes elucidated that the identity of these phenomena were all actually RNAi. Andrew Fire and Craig C. Mello shared the 2006 Nobel Prize in Physiology or Medicine for their work on RNAi in the nematode worm '' Caenorhabditis elegans'', which they published in 1998. Since the discovery of RNAi and its regulatory potentials, it has become evident that RNAi has immense potential in suppression of desired genes. RNAi is now known as precise, efficient, stable and better than antisense therapy for gene suppression. Antisense RNA produced intracellularly by an expression vector m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diploid Chromosome Number
Ploidy () is the number of complete sets of chromosomes in a cell, and hence the number of possible alleles for autosomal and pseudoautosomal genes. Sets of chromosomes refer to the number of maternal and paternal chromosome copies, respectively, in each homologous chromosome pair, which chromosomes naturally exist as. Somatic cells, tissues, and individual organisms can be described according to the number of sets of chromosomes present (the "ploidy level"): monoploid (1 set), diploid (2 sets), triploid (3 sets), tetraploid (4 sets), pentaploid (5 sets), hexaploid (6 sets), heptaploid or septaploid (7 sets), etc. The generic term polyploid is often used to describe cells with three or more chromosome sets. Virtually all sexually reproducing organisms are made up of somatic cells that are diploid or greater, but ploidy level may vary widely between different organisms, between different tissues within the same organism, and at different stages in an organism's life cycle. Half ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Phillip Newmark
Philip A. Newmark is an American biologist, focusing in developmental biology and parasitology, currently at Howard Hughes Medical Institute and University of Wisconsin and an Elected Fellow of the American Association for the Advancement of Science The American Association for the Advancement of Science (AAAS) is an American international non-profit organization with the stated goals of promoting cooperation among scientists, defending scientific freedom, encouraging scientific respons .... References Year of birth missing (living people) Living people Fellows of the American Association for the Advancement of Science University of Wisconsin–Madison faculty 21st-century American biologists {{US-biologist-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Alejandro Sánchez Alvarado
Alejandro Sánchez Alvarado is a molecular biologist, an investigator of the Howard Hughes Medical Institute, and executive director and Chief Scientific Officer of the Stowers Institute for Medical Research. The Sánchez Alvarado Laboratory focuses on understanding the regenerative capabilities of the planarian flatworm ''Schmidtea mediterranea.'' In 2015, Sánchez Alvarado was elected a fellow of the American Academy of Arts and Sciences, and to the National Academy of Sciences in 2018 for his distinguished and continuing achievements in original scientific research. Life Born in Venezuela, Sánchez Alvarado attended the Colegio Emil Friedman for elementary and high school education, where he first cultivated his interest in biology. After receiving a BS in molecular biology and chemistry from Vanderbilt University in 1986, he attended the University of Cincinnati College of Medicine for his PhD in pharmacology and cell biophysics in the laboratory of Dr. Jeffrey Robbins. Aft ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Thomas Hunt Morgan
Thomas Hunt Morgan (September 25, 1866 – December 4, 1945) was an American evolutionary biologist, geneticist, embryologist, and science author who won the Nobel Prize in Physiology or Medicine in 1933 for discoveries elucidating the role that the chromosome plays in heredity. Morgan received his Ph.D. from Johns Hopkins University in zoology in 1890 and researched embryology during his tenure at Bryn Mawr. Following the rediscovery of Mendelian inheritance in 1900, Morgan began to study the genetic characteristics of the fruit fly ''Drosophila melanogaster''. In his famous Fly Room at Columbia University's Schermerhorn Hall, Morgan demonstrated that genes are carried on chromosomes and are the mechanical basis of heredity. These discoveries formed the basis of the modern science of genetics. During his distinguished career, Morgan wrote 22 books and 370 scientific papers. As a result of his work, ''Drosophila'' became a major model organism in contemporary genetics. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spindle Checkpoint
The spindle checkpoint, also known as the metaphase-to-anaphase transition, the spindle assembly checkpoint (SAC), the metaphase checkpoint, or the mitotic checkpoint, is a cell cycle checkpoint during mitosis or meiosis that prevents the separation of the duplicated chromosomes (anaphase) until each chromosome is properly attached to the spindle. To achieve proper segregation, the two kinetochores on the sister chromatids must be attached to opposite spindle poles (bipolar orientation). Only this pattern of attachment will ensure that each daughter cell receives one copy of the chromosome. The defining biochemical feature of this checkpoint is the stimulation of the anaphase-promoting complex by M-phase cyclin-CDK complexes, which in turn causes the proteolytic destruction of cyclins and proteins that hold the sister chromatids together. Overview and importance The beginning of metaphase is characterized by the connection of the microtubules to the kinetochores of the chrom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fatty Acid
In chemistry, particularly in biochemistry, a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated or unsaturated. Most naturally occurring fatty acids have an unbranched chain of an even number of carbon atoms, from 4 to 28. Fatty acids are a major component of the lipids (up to 70% by weight) in some species such as microalgae but in some other organisms are not found in their standalone form, but instead exist as three main classes of esters: triglycerides, phospholipids, and cholesteryl esters. In any of these forms, fatty acids are both important dietary sources of fuel for animals and important structural components for cells. History The concept of fatty acid (''acide gras'') was introduced in 1813 by Michel Eugène Chevreul, though he initially used some variant terms: ''graisse acide'' and ''acide huileux'' ("acid fat" and "oily acid"). Types of fatty acids Fatty acids are classified in many ways: by length, by saturation vs unsaturati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gene
In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a basic unit of heredity and the molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protein-coding genes and noncoding genes. During gene expression, the DNA is first copied into RNA. The RNA can be directly functional or be the intermediate template for a protein that performs a function. The transmission of genes to an organism's offspring is the basis of the inheritance of phenotypic traits. These genes make up different DNA sequences called genotypes. Genotypes along with environmental and developmental factors determine what the phenotypes will be. Most biological traits are under the influence of polygenes (many different genes) as well as gen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]