Multivariate Beta Function
   HOME
*





Multivariate Beta Function
Multivariate may refer to: In mathematics * Multivariable calculus * Multivariate function * Multivariate polynomial In computing * Multivariate cryptography * Multivariate division algorithm * Multivariate interpolation * Multivariate optical computing * Multivariate optimization, used for the design of heat exchangers, see In statistics * Multivariate analysis * Multivariate random variable * Multivariate statistics See also * Univariate * Bivariate (other) Bivariate may refer to: Mathematics * Bivariate function, a function of two variables * Bivariate polynomial, a polynomial of two indeterminates Statistics * Bivariate data, that shows the relationship between two variables * Bivariate analys ...
{{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multivariable Calculus
Multivariable calculus (also known as multivariate calculus) is the extension of calculus in one variable to calculus with functions of several variables: the differentiation and integration of functions involving several variables, rather than just one. Multivariable calculus may be thought of as an elementary part of advanced calculus. For advanced calculus, see calculus on Euclidean space. The special case of calculus in three dimensional space is often called vector calculus. Typical operations Limits and continuity A study of limits and continuity in multivariable calculus yields many counterintuitive results not demonstrated by single-variable functions. For example, there are scalar functions of two variables with points in their domain which give different limits when approached along different paths. E.g., the function. :f(x,y) = \frac approaches zero whenever the point (0,0) is approached along lines through the origin (y=kx). However, when the origin is appr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multivariate Function
In mathematical analysis and its applications, a function of several real variables or real multivariate function is a function (mathematics), function with more than one argument of a function, argument, with all arguments being real number, real variables. This concept extends the idea of a function of a real variable to several variables. The "input" variables take real values, while the "output", also called the "value of the function", may be real or complex number, complex. However, the Complex analysis, study of the complex-valued functions may be easily reduced to the Real analysis, study of the real-valued functions, by considering the real and Imaginary number, imaginary parts of the complex function; therefore, unless explicitly specified, only real-valued functions will be considered in this article. The domain of a function, domain of a function of variables is the subset of for which the function is defined. As usual, the domain of a function of several real vari ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, which are central concepts in algebra and algebraic geometry. Etymology The word ''polynomial'' join ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multivariate Cryptography
Multivariate cryptography is the generic term for asymmetric cryptographic primitives based on multivariate polynomials over a finite field F. In certain cases those polynomials could be defined over both a ground and an extension field. If the polynomials have the degree two, we talk about multivariate quadratics. Solving systems of multivariate polynomial equations is proven to be NP-complete. That's why those schemes are often considered to be good candidates for post-quantum cryptography. Multivariate cryptography has been very productive in terms of design and cryptanalysis. Overall, the situation is now more stable and the strongest schemes have withstood the test of time. It is commonly admitted that Multivariate cryptography turned out to be more successful as an approach to build signature schemes primarily because multivariate schemes provide the shortest signature among post-quantum algorithms. History presented their so-called C* scheme at the Eurocrypt con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multivariate Division Algorithm
Multivariate may refer to: In mathematics * Multivariable calculus * Multivariate function * Multivariate polynomial In computing * Multivariate cryptography * Multivariate division algorithm * Multivariate interpolation * Multivariate optical computing * Multivariate optimization, used for the design of heat exchangers, see In statistics * Multivariate analysis * Multivariate random variable * Multivariate statistics See also * Univariate * Bivariate (other) Bivariate may refer to: Mathematics * Bivariate function, a function of two variables * Bivariate polynomial, a polynomial of two indeterminates Statistics * Bivariate data, that shows the relationship between two variables * Bivariate analysi ...
{{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Multivariate Interpolation
In numerical analysis, multivariate interpolation is interpolation on functions of more than one variable; when the variates are spatial coordinates, it is also known as spatial interpolation. The function to be interpolated is known at given points (x_i, y_i, z_i, \dots) and the interpolation problem consists of yielding values at arbitrary points (x,y,z,\dots). Multivariate interpolation is particularly important in geostatistics, where it is used to create a digital elevation model from a set of points on the Earth's surface (for example, spot heights in a topographic survey or depths in a hydrographic survey). Regular grid For function values known on a regular grid (having predetermined, not necessarily uniform, spacing), the following methods are available. Any dimension * Nearest-neighbor interpolation * n-linear interpolation (see bi- and trilinear interpolation and multilinear polynomial) * n-cubic interpolation (see bi- and tricubic interpolation) * Kriging * Inverse d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multivariate Optical Computing
Multivariate optical computing, also known as molecular factor computing, is an approach to the development of compressed sensing spectroscopic instruments, particularly for industrial applications such as process analytical support. "Conventional" spectroscopic methods often employ multivariate and chemometric methods, such as multivariate calibration, pattern recognition, and classification, to extract analytical information (including concentration) from data collected at many different wavelengths. Multivariate optical computing uses an optical computer to analyze the data as it is collected. The goal of this approach is to produce instruments which are simple and rugged, yet retain the benefits of multivariate techniques for the accuracy and precision of the result. An instrument which implements this approach may be described as a multivariate optical computer. Since it describes an approach, rather than any specific wavelength range, multivariate optical computers may ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multivariate Optimization
Multi-objective optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, multiattribute optimization or Pareto optimization) is an area of multiple criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously. Multi-objective optimization has been applied in many fields of science, including engineering, economics and logistics where optimal decisions need to be taken in the presence of trade-offs between two or more conflicting objectives. Minimizing cost while maximizing comfort while buying a car, and maximizing performance whilst minimizing fuel consumption and emission of pollutants of a vehicle are examples of multi-objective optimization problems involving two and three objectives, respectively. In practical problems, there can be more than three objectives. For a nontrivial multi-objective optimization problem, no single solutio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multivariate Analysis
Multivariate statistics is a subdivision of statistics encompassing the simultaneous observation and analysis of more than one outcome variable. Multivariate statistics concerns understanding the different aims and background of each of the different forms of multivariate analysis, and how they relate to each other. The practical application of multivariate statistics to a particular problem may involve several types of univariate and multivariate analyses in order to understand the relationships between variables and their relevance to the problem being studied. In addition, multivariate statistics is concerned with multivariate probability distributions, in terms of both :*how these can be used to represent the distributions of observed data; :*how they can be used as part of statistical inference, particularly where several different quantities are of interest to the same analysis. Certain types of problems involving multivariate data, for example simple linear regression an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multivariate Random Variable
In probability, and statistics, a multivariate random variable or random vector is a list of mathematical variables each of whose value is unknown, either because the value has not yet occurred or because there is imperfect knowledge of its value. The individual variables in a random vector are grouped together because they are all part of a single mathematical system — often they represent different properties of an individual statistical unit. For example, while a given person has a specific age, height and weight, the representation of these features of ''an unspecified person'' from within a group would be a random vector. Normally each element of a random vector is a real number. Random vectors are often used as the underlying implementation of various types of aggregate random variables, e.g. a random matrix, random tree, random sequence, stochastic process, etc. More formally, a multivariate random variable is a column vector \mathbf = (X_1,\dots,X_n)^\mathsf (or its ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Multivariate Statistics
Multivariate statistics is a subdivision of statistics encompassing the simultaneous observation and analysis of more than one outcome variable. Multivariate statistics concerns understanding the different aims and background of each of the different forms of multivariate analysis, and how they relate to each other. The practical application of multivariate statistics to a particular problem may involve several types of univariate and multivariate analyses in order to understand the relationships between variables and their relevance to the problem being studied. In addition, multivariate statistics is concerned with multivariate probability distributions, in terms of both :*how these can be used to represent the distributions of observed data; :*how they can be used as part of statistical inference, particularly where several different quantities are of interest to the same analysis. Certain types of problems involving multivariate data, for example simple linear regression an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Univariate
In mathematics, a univariate object is an expression, equation, function or polynomial involving only one variable. Objects involving more than one variable are multivariate. In some cases the distinction between the univariate and multivariate cases is fundamental; for example, the fundamental theorem of algebra and Euclid's algorithm for polynomials are fundamental properties of univariate polynomials that cannot be generalized to multivariate polynomials. In statistics, a univariate distribution characterizes one variable, although it can be applied in other ways as well. For example, univariate data are composed of a single scalar component. In time series analysis, the whole time series is the "variable": a univariate time series is the series of values over time of a single quantity. Correspondingly, a "multivariate time series" characterizes the changing values over time of several quantities. In some cases, the terminology is ambiguous, since the values within a univariate t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]