Multiple Subset Sum
   HOME
*





Multiple Subset Sum
The multiple subset sum problem is an optimization problem in computer science and operations research. It is a generalization of the subset sum problem. The input to the problem is a multiset S of ''n'' integers and a positive integer ''m'' representing the number of subsets. The goal is to construct, from the input integers, some ''m'' subsets. The problem has several variants: * ''Max-sum MSSP'': for each subset ''j'' in 1,...,''m'', there is a capacity ''Cj''. The goal is to make the ''sum'' of all subsets as large as possible, such that the sum in each subset j is at most ''Cj''. * ''Max-min MSSP'' (also called ''bottleneck MSSP'' or ''BMSSP''): again each subset has a capacity, but now the goal is to make the ''smallest'' subset sum as large as possible. * ''Fair SSP'': the subsets have no fixed capacities, but each subset belongs to a different person. The utility of each person is the sum of items in his/her subsets. The goal is to construct subsets that satisfy a given crite ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Optimization Problem
In mathematics, computer science and economics, an optimization problem is the problem of finding the ''best'' solution from all feasible solutions. Optimization problems can be divided into two categories, depending on whether the variables are continuous or discrete: * An optimization problem with discrete variables is known as a '' discrete optimization'', in which an object such as an integer, permutation or graph must be found from a countable set. * A problem with continuous variables is known as a ''continuous optimization'', in which an optimal value from a continuous function must be found. They can include constrained problems and multimodal problems. Continuous optimization problem The '' standard form'' of a continuous optimization problem is \begin &\underset& & f(x) \\ &\operatorname & &g_i(x) \leq 0, \quad i = 1,\dots,m \\ &&&h_j(x) = 0, \quad j = 1, \dots,p \end where * is the objective function to be minimized over the -variable vector , * are called ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lenstra's Algorithm
An integer programming problem is a mathematical optimization or feasibility program in which some or all of the variables are restricted to be integers. In many settings the term refers to integer linear programming (ILP), in which the objective function and the constraints (other than the integer constraints) are linear. Integer programming is NP-complete. In particular, the special case of 0-1 integer linear programming, in which unknowns are binary, and only the restrictions must be satisfied, is one of Karp's 21 NP-complete problems. If some decision variables are not discrete, the problem is known as a mixed-integer programming problem. Canonical and standard form for ILPs In integer linear programming, the ''canonical form'' is distinct from the ''standard form''. An integer linear program in canonical form is expressed thus (note that it is the \mathbf vector which is to be decided): : \begin & \text && \mathbf^\mathrm \mathbf\\ & \text && A \mathbf \le \mathbf, \\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Knapsack Problem
The knapsack problem is a problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items. The problem often arises in resource allocation where the decision-makers have to choose from a set of non-divisible projects or tasks under a fixed budget or time constraint, respectively. The knapsack problem has been studied for more than a century, with early works dating as far back as 1897. The name "knapsack problem" dates back to the early works of the mathematician Tobias Dantzig (1884–1956), and refers to the commonplace problem of packing the most valuable or useful items without overloading the luggage. Applications Knapsack problems ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multiple Knapsack Problem
The knapsack problem is a problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items. The problem often arises in resource allocation where the decision-makers have to choose from a set of non-divisible projects or tasks under a fixed budget or time constraint, respectively. The knapsack problem has been studied for more than a century, with early works dating as far back as 1897. The name "knapsack problem" dates back to the early works of the mathematician Tobias Dantzig (1884–1956), and refers to the commonplace problem of packing the most valuable or useful items without overloading the luggage. Applications Knapsack problems ap ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Price Of Fairness
In the theory of fair division, the price of fairness (POF) is the ratio of the largest economic welfare attainable by a division to the economic welfare attained by a ''fair'' division. The POF is a quantitative measure of the loss of welfare that society has to take in order to guarantee fairness. In general, the POF is defined by the following formula: :POF=\frac The exact price varies greatly based on the kind of division, the kind of fairness and the kind of social welfare we are interested in. The most well-studied type of social welfare is '' utilitarian social welfare'', defined as the sum of the (normalized) utilities of all agents. Another type is '' egalitarian social welfare'', defined as the minimum (normalized) utility per agent. Numeric example In this example we focus on the ''utilitarian price of proportionality'', or UPOP. Consider a heterogeneous land-estate that has to be divided among 100 partners, all of whom value it as 100 (or the value is normalized t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fair Item Allocation
Fair item allocation is a kind of a fair division problem in which the items to divide are ''discrete'' rather than continuous. The items have to be divided among several partners who value them differently, and each item has to be given as a whole to a single person. This situation arises in various real-life scenarios: * Several heirs want to divide the inherited property, which contains e.g. a house, a car, a piano and several paintings. * Several lecturers want to divide the courses given in their faculty. Each lecturer can teach one or more whole courses. *White elephant gift exchange parties The indivisibility of the items implies that a fair division may not be possible. As an extreme example, if there is only a single item (e.g. a house), it must be given to a single partner, but this is not fair to the other partners. This is in contrast to the fair cake-cutting problem, where the dividend is divisible and a fair division always exists. In some cases, the indivisibility p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Proportional-fair Rule
In operations research and social choice, the proportional-fair (PF) rule is a rule saying that, among all possible alternatives, one should pick an alternative that cannot be improved, where "improvement" is measured by the sum of relative improvements possible for each individual agent. It aims to provide a compromise between the utilitarian rule - which emphasizes overall system efficiency, and the egalitarian rule - which emphasizes individual fairness. The rule was first presented in the context of rate control in communication networks. However, it is a general social choice rule and can also be used, for example, in resource allocation. Definition Let X be a set of possible `states of the world' or `alternatives'. Society wishes to choose a single state from X. For example, in a single-winner election, X may represent the set of candidates; in a resource allocation setting, X may represent all possible allocations of the resource. Let I be a finite set, representing a c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Egalitarian Rule
In social choice and operations research, the egalitarian rule (also called the max-min rule or the Rawlsian rule) is a rule saying that, among all possible alternatives, society should pick the alternative which maximizes the ''minimum utility'' of all individuals in society. It is a formal mathematical representation of the egalitarian philosophy. It also corresponds to John Rawls' principle of maximizing the welfare of the worst-off individual. Definition Let X be a set of possible `states of the world' or `alternatives'. Society wishes to choose a single state from X. For example, in a single-winner election, X may represent the set of candidates; in a resource allocation setting, X may represent all possible allocations. Let I be a finite set, representing a collection of individuals. For each i \in I, let u_i:X\longrightarrow\mathbb be a ''utility function'', describing the amount of happiness an individual ''i'' derives from each possible state. A '' social choice rule' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Partition Problem
In number theory and computer science, the partition problem, or number partitioning, is the task of deciding whether a given multiset ''S'' of positive integers can be partitioned into two subsets ''S''1 and ''S''2 such that the sum of the numbers in ''S''1 equals the sum of the numbers in ''S''2. Although the partition problem is NP-complete, there is a pseudo-polynomial time dynamic programming solution, and there are heuristics that solve the problem in many instances, either optimally or approximately. For this reason, it has been called "the easiest hard problem". There is an optimization version of the partition problem, which is to partition the multiset ''S'' into two subsets ''S''1, ''S''2 such that the difference between the sum of elements in ''S''1 and the sum of elements in ''S''2 is minimized. The optimization version is NP-hard, but can be solved efficiently in practice. The partition problem is a special case of two related problems: * In the subset sum problem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to practical disciplines (including the design and implementation of hardware and software). Computer science is generally considered an area of academic research and distinct from computer programming. Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing security vulnerabilities. Computer graphics and computational geometry address the generation of images. Programming language theory considers different ways to describe computational processes, and database theory concerns the management of repositories o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


3-partition Problem
The 3-partition problem is a strongly NP-complete problem in computer science. The problem is to decide whether a given multiset of integers can be partitioned into triplets that all have the same sum. More precisely: * The input to the problem is a multiset ''S'' of ''n'' = 3 positive integers. The sum of all integers is . * The output is whether or not there exists a partition of ''S'' into ''m'' triplets ''S''1, ''S''2, …, ''S''''m'' such that the sum of the numbers in each one is equal to ''T''. The ''S''1, ''S''2, …, ''S''''m'' must form a partition of ''S'' in the sense that they are disjoint and they cover ''S''. The 3-partition problem remains strongly NP-complete under the restriction that every integer in ''S'' is strictly between ''T''/4 and ''T''/2. Example # The set S = \ can be partitioned into the four sets \, \, \ , \, each of which sums to ''T'' = 90. # The set S = \ can be partitioned into the two sets \, \ each of which sum to ''T'' = 15. # (every ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Strongly NP-hard
In computational complexity, strong NP-completeness is a property of computational problems that is a special case of NP-completeness. A general computational problem may have numerical parameters. For example, the input to the bin packing problem is a list of objects of specific sizes and a size for the bins that must contain the objects—these object sizes and bin size are numerical parameters. A problem is said to be strongly NP-complete (NP-complete in the strong sense), if it remains NP-complete even when all of its numerical parameters are bounded by a polynomial in the length of the input. A problem is said to be strongly NP-hard if a strongly NP-complete problem has a polynomial reduction to it; in combinatorial optimization, particularly, the phrase "strongly NP-hard" is reserved for problems that are not known to have a polynomial reduction to another strongly NP-complete problem. Normally numerical parameters to a problem are given in positional notation, so a probl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]