Multiple Kernel Learning
   HOME





Multiple Kernel Learning
Multiple kernel learning refers to a set of machine learning methods that use a predefined set of kernels and learn an optimal linear or non-linear combination of kernels as part of the algorithm. Reasons to use multiple kernel learning include a) the ability to select for an optimal kernel and parameters from a larger set of kernels, reducing bias due to kernel selection while allowing for more automated machine learning methods, and b) combining data from different sources (e.g. sound and images from a video) that have different notions of similarity and thus require different kernels. Instead of creating a new kernel, multiple kernel algorithms can be used to combine kernels already established for each individual data source. Multiple kernel learning approaches have been used in many applications, such as event recognition in video, object recognition in images, and biomedical data fusion. Algorithms Multiple kernel learning algorithms have been developed for supervised, semi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Kernel Method
In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. The general task of pattern analysis is to find and study general types of relations (for example clusters, rankings, principal components, correlations, classifications) in datasets. For many algorithms that solve these tasks, the data in raw representation have to be explicitly transformed into feature vector representations via a user-specified ''feature map'': in contrast, kernel methods require only a user-specified ''kernel'', i.e., a similarity function over all pairs of data points computed using inner products. The feature map in kernel machines is infinite dimensional but only requires a finite dimensional matrix from user-input according to the representer theorem. Kernel machines are slow to compute for datasets larger than a couple of thousand exam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Reproducing Kernel Hilbert Spaces
In functional analysis, a reproducing kernel Hilbert space (RKHS) is a Hilbert space of functions in which point evaluation is a continuous linear functional. Specifically, a Hilbert space H of functions from a set X (to \mathbb or \mathbb) is an RKHS if the point-evaluation functional L_x:H\to\mathbb, L_x(f)=f(x), is continuous for every x\in X. Equivalently, H is an RKHS if there exists a function K_x \in H such that, for all f \in H,\langle f, K_x \rangle = f(x).The function K_x is then called the ''reproducing kernel'', and it reproduces the value of f at x via the inner product. An immediate consequence of this property is that convergence in norm implies uniform convergence on any subset of X on which \, K_x\, is bounded. However, the converse does not necessarily hold. Often the set X carries a topology, and \, K_x\, depends continuously on x\in X, in which case: convergence in norm implies uniform convergence on compact subsets of X. It is not entirely straightforward ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Tikhonov Regularization
Ridge regression (also known as Tikhonov regularization, named for Andrey Tikhonov) is a method of estimating the coefficients of multiple- regression models in scenarios where the independent variables are highly correlated. It has been used in many fields including econometrics, chemistry, and engineering. It is a method of regularization of ill-posed problems. It is particularly useful to mitigate the problem of multicollinearity in linear regression, which commonly occurs in models with large numbers of parameters. In general, the method provides improved efficiency in parameter estimation problems in exchange for a tolerable amount of bias (see bias–variance tradeoff). The theory was first introduced by Hoerl and Kennard in 1970 in their ''Technometrics'' papers "Ridge regressions: biased estimation of nonorthogonal problems" and "Ridge regressions: applications in nonorthogonal problems". Ridge regression was developed as a possible solution to the imprecision of least s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]



MORE