Multiple Kernel Learning
   HOME
*





Multiple Kernel Learning
Multiple kernel learning refers to a set of machine learning methods that use a predefined set of kernels and learn an optimal linear or non-linear combination of kernels as part of the algorithm. Reasons to use multiple kernel learning include a) the ability to select for an optimal kernel and parameters from a larger set of kernels, reducing bias due to kernel selection while allowing for more automated machine learning methods, and b) combining data from different sources (e.g. sound and images from a video) that have different notions of similarity and thus require different kernels. Instead of creating a new kernel, multiple kernel algorithms can be used to combine kernels already established for each individual data source. Multiple kernel learning approaches have been used in many applications, such as event recognition in video, object recognition in images, and biomedical data fusion. Algorithms Multiple kernel learning algorithms have been developed for supervised, semi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kernel Method
In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). The general task of pattern analysis is to find and study general types of relations (for example clusters, rankings, principal components, correlations, classifications) in datasets. For many algorithms that solve these tasks, the data in raw representation have to be explicitly transformed into feature vector representations via a user-specified ''feature map'': in contrast, kernel methods require only a user-specified ''kernel'', i.e., a similarity function over all pairs of data points computed using Inner products. The feature map in kernel machines is infinite dimensional but only requires a finite dimensional matrix from user-input according to the Representer theorem. Kernel machines are slow to compute for datasets larger than a couple of thousand examples without parallel processing. Kernel methods owe their name to t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reproducing Kernel Hilbert Spaces
In functional analysis (a branch of mathematics), a reproducing kernel Hilbert space (RKHS) is a Hilbert space of functions in which point evaluation is a continuous linear functional. Roughly speaking, this means that if two functions f and g in the RKHS are close in norm, i.e., \, f-g\, is small, then f and g are also pointwise close, i.e., , f(x)-g(x), is small for all x. The converse does not need to be true. Informally, this can be shown by looking at the supremum norm: the sequence of functions \sin^n (x) converges pointwise, but do not converge uniformly i.e. do not converge with respect to the supremum norm (note that this is not a counterexample because the supremum norm does not arise from any inner product due to not satisfying the parallelogram law). It is not entirely straightforward to construct a Hilbert space of functions which is not an RKHS. Some examples, however, have been found. Note that ''L''2 spaces are not Hilbert spaces of functions (and hence not RK ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tikhonov Regularization
Ridge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. It has been used in many fields including econometrics, chemistry, and engineering. Also known as Tikhonov regularization, named for Andrey Tikhonov, it is a method of regularization of ill-posed problems. It is particularly useful to mitigate the problem of multicollinearity in linear regression, which commonly occurs in models with large numbers of parameters. In general, the method provides improved efficiency in parameter estimation problems in exchange for a tolerable amount of bias (see bias–variance tradeoff). The theory was first introduced by Hoerl and Kennard in 1970 in their ''Technometrics'' papers “RIDGE regressions: biased estimation of nonorthogonal problems” and “RIDGE regressions: applications in nonorthogonal problems”. This was the result of ten years of research into the field of ridge analysis. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Support Vector Machine
In machine learning, support vector machines (SVMs, also support vector networks) are supervised learning models with associated learning algorithms that analyze data for classification and regression analysis. Developed at AT&T Bell Laboratories by Vladimir Vapnik with colleagues (Boser et al., 1992, Guyon et al., 1993, Cortes and Vapnik, 1995, Vapnik et al., 1997) SVMs are one of the most robust prediction methods, being based on statistical learning frameworks or VC theory proposed by Vapnik (1982, 1995) and Chervonenkis (1974). Given a set of training examples, each marked as belonging to one of two categories, an SVM training algorithm builds a model that assigns new examples to one category or the other, making it a non- probabilistic binary linear classifier (although methods such as Platt scaling exist to use SVM in a probabilistic classification setting). SVM maps training examples to points in space so as to maximise the width of the gap between the two categories. New ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elastic Net Regularization
In statistics and, in particular, in the fitting of linear or logistic regression models, the elastic net is a regularized regression method that linearly combines the L1 and L2 penalties of the lasso and ridge methods. Specification The elastic net method overcomes the limitations of the LASSO (least absolute shrinkage and selection operator) method which uses a penalty function based on :\, \beta\, _1 = \textstyle \sum_^p , \beta_j, . Use of this penalty function has several limitations. For example, in the "large ''p'', small ''n''" case (high-dimensional data with few examples), the LASSO selects at most n variables before it saturates. Also if there is a group of highly correlated variables, then the LASSO tends to select one variable from a group and ignore the others. To overcome these limitations, the elastic net adds a quadratic part (\, \beta\, ^2) to the penalty, which when used alone is ridge regression (known also as Tikhonov regularization). The estimates from th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Structural Risk Minimization
Structural risk minimization (SRM) is an inductive principle of use in machine learning. Commonly in machine learning, a generalized model must be selected from a finite data set, with the consequent problem of overfitting – the model becoming too strongly tailored to the particularities of the training set and generalizing poorly to new data. The SRM principle addresses this problem by balancing the model's complexity against its success at fitting the training data. This principle was first set out in a 1974 paper by Vladimir Vapnik and Alexey Chervonenkis and uses the VC dimension. In practical terms, Structural Risk Minimization is implemented by minimizing E_ + \beta H(W), where E_ is the train error, the function H(W) is called a regularization function, and \beta is a constant. H(W) is chosen such that it takes large values on parameters W that belong to high-capacity subsets of the parameter space. Minimizing H(W) in effect limits the capacity of the accessible subset ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multinomial Probit
In statistics and econometrics, the multinomial probit model is a generalization of the probit model used when there are several possible categories that the dependent variable can fall into. As such, it is an alternative to the multinomial logit model as one method of multiclass classification. It is not to be confused with the ''multivariate'' probit model, which is used to model correlated binary outcomes for more than one independent variable. General specification It is assumed that we have a series of observations ''Y''''i'', for ''i'' = 1...''n'', of the outcomes of multi-way choices from a categorical distribution of size ''m'' (there are ''m'' possible choices). Along with each observation ''Y''''i'' is a set of ''k'' observed values ''x''''1,i'', ..., ''x''''k,i'' of explanatory variables (also known as independent variables, predictor variables, features, etc.). Some examples: *The observed outcomes might be "has disease A, has disease B, has disease C, has none ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gibbs Sampling
In statistics, Gibbs sampling or a Gibbs sampler is a Markov chain Monte Carlo (MCMC) algorithm for obtaining a sequence of observations which are approximated from a specified multivariate probability distribution, when direct sampling is difficult. This sequence can be used to approximate the joint distribution (e.g., to generate a histogram of the distribution); to approximate the marginal distribution of one of the variables, or some subset of the variables (for example, the unknown parameters or latent variables); or to compute an integral (such as the expected value of one of the variables). Typically, some of the variables correspond to observations whose values are known, and hence do not need to be sampled. Gibbs sampling is commonly used as a means of statistical inference, especially Bayesian inference. It is a randomized algorithm (i.e. an algorithm that makes use of random numbers), and is an alternative to deterministic algorithms for statistical inferenc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gradient Descent
In mathematics, gradient descent (also often called steepest descent) is a first-order iterative optimization algorithm for finding a local minimum of a differentiable function. The idea is to take repeated steps in the opposite direction of the gradient (or approximate gradient) of the function at the current point, because this is the direction of steepest descent. Conversely, stepping in the direction of the gradient will lead to a local maximum of that function; the procedure is then known as gradient ascent. Gradient descent is generally attributed to Augustin-Louis Cauchy, who first suggested it in 1847. Jacques Hadamard independently proposed a similar method in 1907. Its convergence properties for non-linear optimization problems were first studied by Haskell Curry in 1944, with the method becoming increasingly well-studied and used in the following decades. Description Gradient descent is based on the observation that if the multi-variable function F(\mathbf) is def ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semisupervised Learning
Weak supervision is a branch of machine learning where noisy, limited, or imprecise sources are used to provide supervision signal for labeling large amounts of training data in a supervised learning setting. This approach alleviates the burden of obtaining hand-labeled data sets, which can be costly or impractical. Instead, inexpensive weak labels are employed with the understanding that they are imperfect, but can nonetheless be used to create a strong predictive model. Problem of labeled training data Machine learning models and techniques are increasingly accessible to researchers and developers; the real-world usefulness of these models, however, depends on access to high-quality labeled training data. This need for labeled training data often proves to be a significant obstacle to the application of machine learning models within an organization or industry. This bottleneck effect manifests itself in various ways, including the following examples: Insufficient quantity of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proximal Gradient Methods For Learning
Proximal gradient (forward backward splitting) methods for learning is an area of research in optimization and statistical learning theory which studies algorithms for a general class of convex regularization problems where the regularization penalty may not be differentiable. One such example is \ell_1 regularization (also known as Lasso) of the form :\min_ \frac\sum_^n (y_i- \langle w,x_i\rangle)^2+ \lambda \, w\, _1, \quad \text x_i\in \mathbb^d\text y_i\in\mathbb. Proximal gradient methods offer a general framework for solving regularization problems from statistical learning theory with penalties that are tailored to a specific problem application. Such customized penalties can help to induce certain structure in problem solutions, such as ''sparsity'' (in the case of lasso) or ''group structure'' (in the case of group lasso). Relevant background Proximal gradient methods are applicable in a wide variety of scenarios for solving convex optimization problems of the form : \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]