Multifit Algorithm
   HOME
*





Multifit Algorithm
The multifit algorithm is an algorithm for multiway number partitioning, originally developed for the problem of identical-machines scheduling. It was developed by Coffman, Garey and Johnson. Its novelty comes from the fact that it uses an algorithm for another famous problem - the bin packing problem - as a subroutine. The algorithm The input to the algorithm is a set ''S'' of numbers, and a parameter ''n''. The required output is a partition of ''S'' into ''n'' subsets, such that the largest subset sum (also called the makespan) is as small as possible. The algorithm uses as a subroutine, an algorithm called '' first-fit-decreasing bin packing'' (FFD). The FFD algorithm takes as input the same set ''S'' of numbers, and a bin-capacity ''c''. It heuristically packs numbers into bins such that the sum of numbers in each bin is at most ''C'', aiming to use as few bins as possible. Multifit runs FFD multiple times, each time with a different capacity ''C'', until it finds some ''C'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multiway Number Partitioning
In computer science, multiway number partitioning is the problem of partitioning a multiset of numbers into a fixed number of subsets, such that the sums of the subsets are as similar as possible. It was first presented by Ronald Graham in 1969 in the context of the Identical-machines scheduling problem. The problem is parametrized by a positive integer ''k'', and called ''k''-way number partitioning. The input to the problem is a multiset ''S'' of numbers (usually integers), whose sum is ''k*T''. The associated decision problem is to decide whether ''S'' can be partitioned into ''k'' subsets such that the sum of each subset is exactly ''T''. There is also an optimization problem: find a partition of ''S'' into ''k'' subsets, such that the ''k'' sums are "as near as possible". The exact optimization objective can be defined in several ways: * Minimize the difference between the largest sum and the smallest sum. This objective is common in papers about multiway number partitioning, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Identical-machines Scheduling
Identical-machines scheduling is an optimization problem in computer science and operations research. We are given ''n'' jobs ''J''1, ''J''2, ..., ''Jn'' of varying processing times, which need to be scheduled on ''m'' identical machines, such that a certain objective function is optimized, for example, the makespan is minimized. Identical machine scheduling is a special case of uniform machine scheduling, which is itself a special case of optimal job scheduling. In the general case, the processing time of each job may be different on different machines; in the case of identical machine scheduling, the processing time of each job is the same on each machine. Therefore, identical machine scheduling is equivalent to multiway number partitioning. A special case of identical machine scheduling is single-machine scheduling. In the standard three-field notation for optimal job scheduling problems, the identical-machines variant is denoted by P in the first field. For example, " P, , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bin Packing Problem
The bin packing problem is an optimization problem, in which items of different sizes must be packed into a finite number of bins or containers, each of a fixed given capacity, in a way that minimizes the number of bins used. The problem has many applications, such as filling up containers, loading trucks with weight capacity constraints, creating file backups in media and technology mapping in FPGA semiconductor chip design. Computationally, the problem is NP-hard, and the corresponding decision problem - deciding if items can fit into a specified number of bins - is NP-complete. Despite its worst-case hardness, optimal solutions to very large instances of the problem can be produced with sophisticated algorithms. In addition, many approximation algorithms exist. For example, the first fit algorithm provides a fast but often non-optimal solution, involving placing each item into the first bin in which it will fit. It requires '' Θ''(''n'' log ''n'') time, where ''n' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




First-fit-decreasing Bin Packing
First-fit-decreasing (FFD) is an algorithm for bin packing. Its input is a list of items of different sizes. Its output is a ''packing'' - a partition of the items into bins of fixed capacity, such that the sum of sizes of items in each bin is at most the capacity. Ideally, we would like to use as few bins as possible, but minimizing the number of bins is an NP-hard problem, so we use an approximately-optimal heuristic. Description The FFD algorithm works as follows. * Order the items from largest to smallest. * Open a new empty bin, bin #1. * For each item from largest to smallest, find the ''first'' bin into which the item fits, if any. ** If such a bin is found, put the new item in it. ** Otherwise, open a new empty bin put the new item in it. In short: FFD orders the items by descending size, and then calls first-fit bin packing. An equivalent description of the FFD algorithm is as follows. * Order the items from largest to smallest. * While there are remaining items: ** ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Search
In computer science, binary search, also known as half-interval search, logarithmic search, or binary chop, is a search algorithm that finds the position of a target value within a sorted array. Binary search compares the target value to the middle element of the array. If they are not equal, the half in which the target cannot lie is eliminated and the search continues on the remaining half, again taking the middle element to compare to the target value, and repeating this until the target value is found. If the search ends with the remaining half being empty, the target is not in the array. Binary search runs in logarithmic time in the worst case, making O(\log n) comparisons, where n is the number of elements in the array. Binary search is faster than linear search except for small arrays. However, the array must be sorted first to be able to apply binary search. There are specialized data structures designed for fast searching, such as hash tables, that can be searched mor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Constant Factor Approximation Algorithm
In computational complexity theory, the class APX (an abbreviation of "approximable") is the set of NP optimization problems that allow polynomial-time approximation algorithms with approximation ratio bounded by a constant (or constant-factor approximation algorithms for short). In simple terms, problems in this class have efficient algorithms that can find an answer within some fixed multiplicative factor of the optimal answer. An approximation algorithm is called an f(n)-approximation algorithm for input size n if it can be proven that the solution that the algorithm finds is at most a multiplicative factor of f(n) times worse than the optimal solution. Here, f(n) is called the ''approximation ratio''. Problems in APX are those with algorithms for which the approximation ratio f(n) is a constant c. The approximation ratio is conventionally stated greater than 1. In the case of minimization problems, f(n) is the found solution's score divided by the optimum solution's score, w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


First-fit-decreasing Bin Packing
First-fit-decreasing (FFD) is an algorithm for bin packing. Its input is a list of items of different sizes. Its output is a ''packing'' - a partition of the items into bins of fixed capacity, such that the sum of sizes of items in each bin is at most the capacity. Ideally, we would like to use as few bins as possible, but minimizing the number of bins is an NP-hard problem, so we use an approximately-optimal heuristic. Description The FFD algorithm works as follows. * Order the items from largest to smallest. * Open a new empty bin, bin #1. * For each item from largest to smallest, find the ''first'' bin into which the item fits, if any. ** If such a bin is found, put the new item in it. ** Otherwise, open a new empty bin put the new item in it. In short: FFD orders the items by descending size, and then calls first-fit bin packing. An equivalent description of the FFD algorithm is as follows. * Order the items from largest to smallest. * While there are remaining items: ** ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uniform-machines Scheduling
Uniform machine scheduling (also called uniformly-related machine scheduling or related machine scheduling) is an optimization problem in computer science and operations research. It is a variant of optimal job scheduling. We are given ''n'' jobs ''J''1, ''J''2, ..., ''Jn'' of varying processing times, which need to be scheduled on ''m'' different machines. The goal is to minimize the makespan - the total time required to execute the schedule. The time that machine ''i'' needs in order to process job j is denoted by ''pi,j''. In the general case, the times ''pi,j'' are unrelated, and any matrix of positive processing times is possible. In the specific variant called ''uniform machine scheduling'', some machines are ''uniformly'' faster than others. This means that, for each machine ''i'', there is a speed factor ''si'', and the run-time of job ''j'' on machine ''i'' is ''pi,j'' = ''pj'' / ''si''. In the standard three-field notation for optimal job scheduling problems, the uniform-m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




LPT Algorithm
Longest-processing-time-first (LPT) is a greedy algorithm for job scheduling. The input to the algorithm is a set of ''jobs'', each of which has a specific processing-time. There is also a number ''m'' specifying the number of ''machines'' that can process the jobs. The LPT algorithm works as follows: # Order the jobs by descending order of their processing-time, such that the job with the longest processing time is first. # Schedule each job in this sequence into a machine in which the current load (= total processing-time of scheduled jobs) is smallest. Step 2 of the algorithm is essentially the list-scheduling (LS) algorithm. The difference is that LS loops over the jobs in an arbitrary order, while LPT pre-orders them by descending processing time. LPT was first analyzed by Ronald Graham in the 1960s in the context of the identical-machines scheduling problem. Later, it was applied to many other variants of the problem. LPT can also be described in a more abstract way, as an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Longest-processing-time-first Scheduling
Longest-processing-time-first (LPT) is a greedy algorithm for job scheduling. The input to the algorithm is a set of ''jobs'', each of which has a specific processing-time. There is also a number ''m'' specifying the number of ''machines'' that can process the jobs. The LPT algorithm works as follows: # Order the jobs by descending order of their processing-time, such that the job with the longest processing time is first. # Schedule each job in this sequence into a machine in which the current load (= total processing-time of scheduled jobs) is smallest. Step 2 of the algorithm is essentially the list-scheduling (LS) algorithm. The difference is that LS loops over the jobs in an arbitrary order, while LPT pre-orders them by descending processing time. LPT was first analyzed by Ronald Graham in the 1960s in the context of the identical-machines scheduling problem. Later, it was applied to many other variants of the problem. LPT can also be described in a more abstract way, as an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maximin-share
Maximin share (MMS) is a criterion of fair item allocation. Given a set of items with different values, the ''1-out-of-n maximin-share'' is the maximum value that can be gained by partitioning the items into ''n'' parts and taking the part with the minimum value. An allocation of items among ''n'' agents with different valuations is called MMS-fair if each agent gets a bundle that is at least as good as his/her 1-out-of-''n'' maximin-share. MMS fairness was invented by Eric Budish as a relaxation of the criterion of proportionality - each agent gets a bundle that is at least as good as the equal split (1/''n'' of every resource). Proportionality can be guaranteed when the items are divisible, but not when they are indivisible, even if all agents have identical valuations. In contrast, MMS fairness can always be guaranteed to identical agents, so it is a natural alternative to proportionality even when the agents are different. Motivation and examples Identical items. Suppose fi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Number Partitioning
In computer science, multiway number partitioning is the problem of partitioning a multiset of numbers into a fixed number of subsets, such that the sums of the subsets are as similar as possible. It was first presented by Ronald Graham in 1969 in the context of the Identical-machines scheduling problem. The problem is parametrized by a positive integer ''k'', and called ''k''-way number partitioning. The input to the problem is a multiset ''S'' of numbers (usually integers), whose sum is ''k*T''. The associated decision problem is to decide whether ''S'' can be partitioned into ''k'' subsets such that the sum of each subset is exactly ''T''. There is also an optimization problem: find a partition of ''S'' into ''k'' subsets, such that the ''k'' sums are "as near as possible". The exact optimization objective can be defined in several ways: * Minimize the difference between the largest sum and the smallest sum. This objective is common in papers about multiway number partitioning, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]