Min-cut
   HOME
*



picture info

Min-cut
In graph theory, a minimum cut or min-cut of a graph is a cut (a partition of the vertices of a graph into two disjoint subsets) that is minimal in some metric. Variations of the minimum cut problem consider weighted graphs, directed graphs, terminals, and partitioning the vertices into more than two sets. The weighted min-cut problem allowing both positive and negative weights can be trivially transformed into a weighted maximum cut problem by flipping the sign in all weights. __TOC__ Without terminal nodes The minimum cut problem in undirected, weighted graphs limited to non-negative weights can be solved in polynomial time by the Stoer-Wagner algorithm. In the special case when the graph is unweighted, Karger's algorithm provides an efficient randomized method for finding the cut. In this case, the minimum cut equals the edge connectivity of the graph. A generalization of the minimum cut problem without terminals is the minimum -cut, in which the goal is to partition the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Max-flow Min-cut Theorem
In computer science and optimization theory, the max-flow min-cut theorem states that in a flow network, the maximum amount of flow passing from the ''source'' to the ''sink'' is equal to the total weight of the edges in a minimum cut, i.e., the smallest total weight of the edges which if removed would disconnect the source from the sink. This is a special case of the duality theorem for linear programs and can be used to derive Menger's theorem and the Kőnig–Egerváry theorem. Definitions and statement The theorem equates two quantities: the maximum flow through a network, and the minimum capacity of a cut of the network. To state the theorem, each of these notions must first be defined. Network A network consists of * a finite directed graph , where ''V'' denotes the finite set of vertices and is the set of directed edges; * a source and a sink ; * a capacity function, which is a mapping c:E\to\R^+ denoted by or for . It represents the maximum amount of flow that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Max-flow Min-cut Theorem
In computer science and optimization theory, the max-flow min-cut theorem states that in a flow network, the maximum amount of flow passing from the ''source'' to the ''sink'' is equal to the total weight of the edges in a minimum cut, i.e., the smallest total weight of the edges which if removed would disconnect the source from the sink. This is a special case of the duality theorem for linear programs and can be used to derive Menger's theorem and the Kőnig–Egerváry theorem. Definitions and statement The theorem equates two quantities: the maximum flow through a network, and the minimum capacity of a cut of the network. To state the theorem, each of these notions must first be defined. Network A network consists of * a finite directed graph , where ''V'' denotes the finite set of vertices and is the set of directed edges; * a source and a sink ; * a capacity function, which is a mapping c:E\to\R^+ denoted by or for . It represents the maximum amount of flow that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Karger's Algorithm
In computer science and graph theory, Karger's algorithm is a randomized algorithm to compute a minimum cut of a connected graph. It was invented by David Karger and first published in 1993. The idea of the algorithm is based on the concept of contraction of an edge (u, v) in an undirected graph G = (V, E). Informally speaking, the contraction of an edge merges the nodes u and v into one, reducing the total number of nodes of the graph by one. All other edges connecting either u or v are "reattached" to the merged node, effectively producing a multigraph. Karger's basic algorithm iteratively contracts randomly chosen edges until only two nodes remain; those nodes represent a cut in the original graph. By iterating this basic algorithm a sufficient number of times, a minimum cut can be found with high probability. The global minimum cut problem A ''cut'' (S,T) in an undirected graph G = (V, E) is a partition of the vertices V into two non-empty, disjoint sets S\cup T= V. The ''c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cut (graph Theory)
In graph theory, a cut is a partition of the vertices of a graph into two disjoint subsets. Any cut determines a cut-set, the set of edges that have one endpoint in each subset of the partition. These edges are said to cross the cut. In a connected graph, each cut-set determines a unique cut, and in some cases cuts are identified with their cut-sets rather than with their vertex partitions. In a flow network, an s–t cut is a cut that requires the ''source'' and the ''sink'' to be in different subsets, and its ''cut-set'' only consists of edges going from the source's side to the sink's side. The ''capacity'' of an s–t cut is defined as the sum of the capacity of each edge in the ''cut-set''. Definition A cut is a partition of of a graph into two subsets and . The cut-set of a cut is the set of edges that have one endpoint in and the other endpoint in . If and are specified vertices of the graph , then an cut is a cut in which belongs to the set and belongs to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE