Matrix-analytic Method
   HOME
*





Matrix-analytic Method
In probability theory, the matrix analytic method is a technique to compute the stationary probability distribution of a Markov chain which has a repeating structure (after some point) and a state space which grows unboundedly in no more than one dimension. Such models are often described as M/G/1 type Markov chains because they can describe transitions in an M/G/1 queue. The method is a more complicated version of the matrix geometric method and is the classical solution method for M/G/1 chains. Method description An M/G/1-type stochastic matrix is one of the form ::P = \begin B_0 & B_1 & B_2 & B_3 & \cdots \\ A_0 & A_1 & A_2 & A_3 & \cdots \\ & A_0 & A_1 & A_2 & \cdots \\ & & A_0 & A_1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end where ''B''''i'' and ''A''''i'' are ''k'' × ''k'' matrices. (Note that unmarked matrix entries represent zeroes.) Such a matrix describes the embedded Markov chain ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Theory
Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event. Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of non-deterministic or uncertain processes or measured quantities that may either be single occurrences or evolve over time in a random fashion). Although it is not possible to perfectly predict random events, much can be said about their behavior. Two major results in probability ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Distribution
In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events (subsets of the sample space). For instance, if is used to denote the outcome of a coin toss ("the experiment"), then the probability distribution of would take the value 0.5 (1 in 2 or 1/2) for , and 0.5 for (assuming that the coin is fair). Examples of random phenomena include the weather conditions at some future date, the height of a randomly selected person, the fraction of male students in a school, the results of a survey to be conducted, etc. Introduction A probability distribution is a mathematical description of the probabilities of events, subsets of the sample space. The sample space, often denoted by \Omega, is the set of all possible outcomes of a random phe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Markov Chain
A Markov chain or Markov process is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. Informally, this may be thought of as, "What happens next depends only on the state of affairs ''now''." A countably infinite sequence, in which the chain moves state at discrete time steps, gives a discrete-time Markov chain (DTMC). A continuous-time process is called a continuous-time Markov chain (CTMC). It is named after the Russian mathematician Andrey Markov. Markov chains have many applications as statistical models of real-world processes, such as studying cruise control systems in motor vehicles, queues or lines of customers arriving at an airport, currency exchange rates and animal population dynamics. Markov processes are the basis for general stochastic simulation methods known as Markov chain Monte Carlo, which are used for simulating sampling from complex probability dist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


M/G/1 Type Markov Chain
In queueing theory, a discipline within the mathematical theory of probability, an M/G/1 queue is a queue model where arrivals are Markovian (modulated by a Poisson process), service times have a General distribution and there is a single server. The model name is written in Kendall's notation, and is an extension of the M/M/1 queue, where service times must be exponentially distributed. The classic application of the M/G/1 queue is to model performance of a fixed head hard disk. Model definition A queue represented by a M/G/1 queue is a stochastic process whose state space is the set , where the value corresponds to the number of customers in the queue, including any being served. Transitions from state ''i'' to ''i'' + 1 represent the arrival of a new customer: the times between such arrivals have an exponential distribution with parameter λ. Transitions from state ''i'' to ''i'' − 1 represent a customer who has been served, finishing being served and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matrix Geometric Method
In probability theory, the matrix geometric method is a method for the analysis of quasi-birth–death processes, continuous-time Markov chain whose transition rate matrices with a repetitive block structure. The method was developed "largely by Marcel F. Neuts and his students starting around 1975." Method description The method requires a transition rate matrix with tridiagonal block structure as follows ::Q=\begin B_ & B_ \\ B_ & A_1 & A_2 \\ & A_0 & A_1 & A_2 \\ && A_0 & A_1 & A_2 \\ &&& A_0 & A_1 & A_2 \\ &&&& \ddots & \ddots & \ddots \end where each of ''B''00, ''B''01, ''B''10, ''A''0, ''A''1 and ''A''2 are matrices. To compute the stationary distribution ''π'' writing ''π'' ''Q'' = 0 the balance equations are considered for sub-vectors ''π''''i'' ::\begin \pi_0 B_ + \pi_1 B_ &= 0\\ \pi_0 B_ + \pi_1 A_1 + \pi_2 A_0 &= 0\\ \pi_1 A_2 + \pi_2 A_1 + \pi_3 A_0 &= 0 \\ & \vdots \\ \pi_ A_2 + \pi_i A_1 + \pi_ A_0 &= 0\\ & \vdots \\ \end Observe that the re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Embedded Markov Chain
A Markov chain or Markov process is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. Informally, this may be thought of as, "What happens next depends only on the state of affairs ''now''." A countably infinite sequence, in which the chain moves state at discrete time steps, gives a discrete-time Markov chain (DTMC). A continuous-time process is called a continuous-time Markov chain (CTMC). It is named after the Russian mathematician Andrey Markov. Markov chains have many applications as statistical models of real-world processes, such as studying cruise control systems in motor vehicles, queues or lines of customers arriving at an airport, currency exchange rates and animal population dynamics. Markov processes are the basis for general stochastic simulation methods known as Markov chain Monte Carlo, which are used for simulating sampling from complex probability distri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE