Mathematical Transformation
   HOME
*



picture info

Mathematical Transformation
In mathematics, a transformation is a Function (mathematics), function ''f'', usually with some Geometry, geometrical underpinning, that maps a set (mathematics), set ''X'' to itself, i.e. . Examples include linear transformations of vector spaces and geometric transformations, which include projective transformations, affine transformations, and specific affine transformations, such as rotations, reflection (mathematics), reflections and translation (geometry), translations. Partial transformations While it is common to use the term transformation for any function of a set into itself (especially in terms like "transformation semigroup" and similar), there exists an alternative form of terminological convention in which the term "transformation" is reserved only for bijections. When such a narrow notion of transformation is generalized to partial functions, then a partial transformation is a function ''f'': ''A'' → ''B'', where both ''A'' and ''B'' are subsets of some set ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

A Code Snippet For A Rhombic Repetitive Pattern
A, or a, is the first letter and the first vowel of the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is ''a'' (pronounced ), plural ''aes''. It is similar in shape to the Ancient Greek letter alpha, from which it derives. The uppercase version consists of the two slanting sides of a triangle, crossed in the middle by a horizontal bar. The lowercase version can be written in two forms: the double-storey a and single-storey ɑ. The latter is commonly used in handwriting and fonts based on it, especially fonts intended to be read by children, and is also found in italic type. In English grammar, " a", and its variant " an", are indefinite articles. History The earliest certain ancestor of "A" is aleph (also written 'aleph), the first letter of the Phoenician alphabet, which consisted entirely of consonants (for that reason, it is also called an abjad to distinguish it fro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Function Composition
In mathematics, function composition is an operation that takes two functions and , and produces a function such that . In this operation, the function is applied to the result of applying the function to . That is, the functions and are composed to yield a function that maps in domain to in codomain . Intuitively, if is a function of , and is a function of , then is a function of . The resulting ''composite'' function is denoted , defined by for all in . The notation is read as " of ", " after ", " circle ", " round ", " about ", " composed with ", " following ", " then ", or " on ", or "the composition of and ". Intuitively, composing functions is a chaining process in which the output of function feeds the input of function . The composition of functions is a special case of the composition of relations, sometimes also denoted by \circ. As a result, all properties of composition of relations are true of composition of functions, such as the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transformation Matrix
In linear algebra, linear transformations can be represented by matrices. If T is a linear transformation mapping \mathbb^n to \mathbb^m and \mathbf x is a column vector with n entries, then T( \mathbf x ) = A \mathbf x for some m \times n matrix A, called the transformation matrix of T. Note that A has m rows and n columns, whereas the transformation T is from \mathbb^n to \mathbb^m. There are alternative expressions of transformation matrices involving row vectors that are preferred by some authors. Uses Matrices allow arbitrary linear transformations to be displayed in a consistent format, suitable for computation. This also allows transformations to be composed easily (by multiplying their matrices). Linear transformations are not the only ones that can be represented by matrices. Some transformations that are non-linear on an n-dimensional Euclidean space R''n'' can be represented as linear transformations on the ''n''+1-dimensional space R''n''+1. These include both aff ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Transformation Group
In mathematics, the automorphism group of an object ''X'' is the group consisting of automorphisms of ''X'' under composition of morphisms. For example, if ''X'' is a finite-dimensional vector space, then the automorphism group of ''X'' is the group of invertible linear transformations from ''X'' to itself (the general linear group of ''X''). If instead ''X'' is a group, then its automorphism group \operatorname(X) is the group consisting of all group automorphisms of ''X''. Especially in geometric contexts, an automorphism group is also called a symmetry group. A subgroup of an automorphism group is sometimes called a transformation group. Automorphism groups are studied in a general way in the field of category theory. Examples If ''X'' is a set with no additional structure, then any bijection from ''X'' to itself is an automorphism, and hence the automorphism group of ''X'' in this case is precisely the symmetric group of ''X''. If the set ''X'' has additional structur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transformation Semigroup
In algebra, a transformation semigroup (or composition semigroup) is a collection of transformations ( functions from a set to itself) that is closed under function composition. If it includes the identity function, it is a monoid, called a transformation (or composition) monoid. This is the semigroup analogue of a permutation group. A transformation semigroup of a set has a tautological semigroup action on that set. Such actions are characterized by being faithful, i.e., if two elements of the semigroup have the same action, then they are equal. An analogue of Cayley's theorem shows that any semigroup can be realized as a transformation semigroup of some set. In automata theory, some authors use the term ''transformation semigroup'' to refer to a semigroup acting faithfully on a set of "states" different from the semigroup's base set. There is a correspondence between the two notions. Transformation semigroups and monoids A transformation semigroup is a pair (''X'',''S''), w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transformation Geometry
In mathematics, transformation geometry (or transformational geometry) is the name of a mathematical and pedagogic take on the study of geometry by focusing on groups of geometric transformations, and properties that are invariant under them. It is opposed to the classical synthetic geometry approach of Euclidean geometry, that focuses on proving theorems. For example, within transformation geometry, the properties of an isosceles triangle are deduced from the fact that it is mapped to itself by a reflection about a certain line. This contrasts with the classical proofs by the criteria for congruence of triangles. The first systematic effort to use transformations as the foundation of geometry was made by Felix Klein in the 19th century, under the name Erlangen programme. For nearly a century this approach remained confined to mathematics research circles. In the 20th century efforts were made to exploit it for mathematical education. Andrei Kolmogorov included this appr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rigid Transformation
In mathematics, a rigid transformation (also called Euclidean transformation or Euclidean isometry) is a geometric transformation of a Euclidean space that preserves the Euclidean distance between every pair of points. The rigid transformations include rotations, translations, reflections, or any sequence of these. Reflections are sometimes excluded from the definition of a rigid transformation by requiring that the transformation also preserve the handedness of objects in the Euclidean space. (A reflection would not preserve handedness; for instance, it would transform a left hand into a right hand.) To avoid ambiguity, a transformation that preserves handedness is known as a proper rigid transformation, or rototranslation. Any proper rigid transformation can be decomposed into a rotation followed by a translation, while any improper rigid transformation can be decomposed into an improper rotation followed by a translation, or into a sequence of reflections. Any object wil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Transformation
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism. If a linear map is a bijection then it is called a . In the case where V = W, a linear map is called a (linear) ''endomorphism''. Sometimes the term refers to this case, but the term "linear operator" can have different meanings for different conventions: for example, it can be used to emphasize that V and W are real vector spaces (not necessarily with V = W), or it can be used to emphasize that V is a function space, which is a common convention in functional analysis. Sometimes the term ''linear function'' has the same meaning as ''linear map ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Infinitesimal Transformation
In mathematics, an infinitesimal transformation is a limiting form of ''small'' transformation. For example one may talk about an infinitesimal rotation of a rigid body, in three-dimensional space. This is conventionally represented by a 3×3 skew-symmetric matrix ''A''. It is not the matrix of an actual rotation in space; but for small real values of a parameter ε the transformation :T=I+\varepsilon A is a small rotation, up to quantities of order ε2. History A comprehensive theory of infinitesimal transformations was first given by Sophus Lie. This was at the heart of his work, on what are now called Lie groups and their accompanying Lie algebras; and the identification of their role in geometry and especially the theory of differential equations. The properties of an abstract Lie algebra are exactly those definitive of infinitesimal transformations, just as the axioms of group theory embody symmetry. The term "Lie algebra" was introduced in 1934 by Hermann Weyl, for what ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Geometric Transformation
In mathematics, a geometric transformation is any bijection of a set to itself (or to another such set) with some salient geometrical underpinning. More specifically, it is a function whose domain and range are sets of points — most often both \mathbb^2 or both \mathbb^3 — such that the function is bijective so that its inverse exists. The study of geometry may be approached by the study of these transformations. Classifications Geometric transformations can be classified by the dimension of their operand sets (thus distinguishing between, say, planar transformations and spatial transformations). They can also be classified according to the properties they preserve: * Displacements preserve distances and oriented angles (e.g., translations); * Isometries preserve angles and distances (e.g., Euclidean transformations); * Similarities preserve angles and ratios between distances (e.g., resizing); * Affine transformations preserve parallelism (e.g., scaling, shear); * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Data Transformation (statistics)
In statistics, data transformation is the application of a deterministic mathematical function to each point in a data set—that is, each data point ''zi'' is replaced with the transformed value ''yi'' = ''f''(''zi''), where ''f'' is a function. Transforms are usually applied so that the data appear to more closely meet the assumptions of a statistical inference procedure that is to be applied, or to improve the interpretability or appearance of graphs. Nearly always, the function that is used to transform the data is invertible, and generally is continuous. The transformation is usually applied to a collection of comparable measurements. For example, if we are working with data on peoples' incomes in some currency unit, it would be common to transform each person's income value by the logarithm function. Motivation Guidance for how data should be transformed, or whether a transformation should be applied at all, should come from the particular statistical analysis to be per ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coordinate Transformation
In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is significant, and they are sometimes identified by their position in an ordered tuple and sometimes by a letter, as in "the ''x''-coordinate". The coordinates are taken to be real numbers in elementary mathematics, but may be complex numbers or elements of a more abstract system such as a commutative ring. The use of a coordinate system allows problems in geometry to be translated into problems about numbers and ''vice versa''; this is the basis of analytic geometry. Common coordinate systems Number line The simplest example of a coordinate system is the identification of points on a line with real numbers using the ''number line''. In this system, an arbitrary point ''O'' (the ''origin'') is chosen on a given line. The coordinate of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]