Mask Generation Function
   HOME
*





Mask Generation Function
A mask generation function (MGF) is a cryptographic primitive similar to a cryptographic hash function except that while a hash function's output has a fixed size, a MGF supports output of a variable length. In this respect, a MGF can be viewed as a single-use XOR function: it can accept input of any length and process it to produce output of any length. Mask generation functions are completely deterministic: for any given input and any desired output length the output is always the same. Definition A mask generation function takes an octet string of variable length and a desired output length as input, and outputs an octet string of the desired length. There may be restrictions on the length of the input and output octet strings, but such bounds are generally very large. Mask generation functions are deterministic; the octet string output is completely determined by the input octet string. The output of a mask generation function should be pseudorandom, that is, if the seed to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cryptographic Hash Function
A cryptographic hash function (CHF) is a hash algorithm (a map of an arbitrary binary string to a binary string with fixed size of n bits) that has special properties desirable for cryptography: * the probability of a particular n-bit output result (hash value) for a random input string ("message") is 2^ (like for any good hash), so the hash value can be used as a representative of the message; * finding an input string that matches a given hash value (a ''pre-image'') is unfeasible, unless the value is selected from a known pre-calculated dictionary (" rainbow table"). The ''resistance'' to such search is quantified as security strength, a cryptographic hash with n bits of hash value is expected to have a ''preimage resistance'' strength of n bits. A ''second preimage'' resistance strength, with the same expectations, refers to a similar problem of finding a second message that matches the given hash value when one message is already known; * finding any pair of different messa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Padding (cryptography)
In cryptography, padding is any of a number of distinct practices which all include adding data to the beginning, middle, or end of a message prior to encryption. In classical cryptography, padding may include adding nonsense phrases to a message to obscure the fact that many messages end in predictable ways, e.g. ''sincerely yours''. Classical cryptography Official messages often start and end in predictable ways: ''My dear ambassador, Weather report, Sincerely yours'', etc. The primary use of padding with classical ciphers is to prevent the cryptanalyst from using that predictability to find Known-plaintext attack, known plaintext that aids in breaking the encryption. Random length padding also prevents an attacker from knowing the exact length of the plaintext message. A famous example of classical padding which caused a great misunderstanding is "the world wonders" incident, which nearly caused an Allied loss at the WWII Battle off Samar, part of the larger Battle of Leyte Gul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


One-time Pad
In cryptography, the one-time pad (OTP) is an encryption technique that cannot be cracked, but requires the use of a single-use pre-shared key that is not smaller than the message being sent. In this technique, a plaintext is paired with a random secret key (also referred to as ''a one-time pad''). Then, each bit or character of the plaintext is encrypted by combining it with the corresponding bit or character from the pad using modular addition. The resulting ciphertext will be impossible to decrypt or break if the following four conditions are met: #The key must be at least as long as the plaintext. #The key must be random ( uniformly distributed in the set of all possible keys and independent of the plaintext), entirely sampled from a non-algorithmic, chaotic source such as a hardware random number generator. It is not sufficient for OTP keys to pass statistical randomness tests as such tests cannot measure entropy, and the number of bits of entropy must be at least equa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Keystream
In cryptography, a keystream is a stream of random or pseudorandom characters that are combined with a plaintext message to produce an encrypted message (the ciphertext). The "characters" in the keystream can be bits, bytes, numbers or actual characters like A-Z depending on the usage case. Usually each character in the keystream is either added, subtracted or XORed with a character in the plaintext to produce the ciphertext, using modular arithmetic. Keystreams are used in the one-time pad cipher and in most stream ciphers. Block ciphers can also be used to produce keystreams. For instance, CTR mode is a block mode that makes a block cipher produce a keystream and thus turns the block cipher into a stream cipher. Example In this simple example we use the English alphabet of 26 characters from a-z. Thus we can not encrypt numbers, commas, spaces and other symbols. The random numbers in the keystream then have to be at least between 0 and 25. To encrypt we add the keystream nu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Symmetric-key Algorithm
Symmetric-key algorithms are algorithms for cryptography that use the same cryptographic keys for both the encryption of plaintext and the decryption of ciphertext. The keys may be identical, or there may be a simple transformation to go between the two keys. The keys, in practice, represent a shared secret between two or more parties that can be used to maintain a private information link. The requirement that both parties have access to the secret key is one of the main drawbacks of symmetric-key encryption, in comparison to public-key encryption (also known as asymmetric-key encryption). However, symmetric-key encryption algorithms are usually better for bulk encryption. They have a smaller key size, which means less storage space and faster transmission. Due to this, asymmetric-key encryption is often used to exchange the secret key for symmetric-key encryption. Types Symmetric-key encryption can use either stream ciphers or block ciphers. * Stream ciphers encrypt the digits ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudorandom Number Generator
A pseudorandom number generator (PRNG), also known as a deterministic random bit generator (DRBG), is an algorithm for generating a sequence of numbers whose properties approximate the properties of sequences of random numbers. The PRNG-generated sequence is not truly random, because it is completely determined by an initial value, called the PRNG's ''seed'' (which may include truly random values). Although sequences that are closer to truly random can be generated using hardware random number generators, ''pseudorandom number generators'' are important in practice for their speed in number generation and their reproducibility. PRNGs are central in applications such as simulations (e.g. for the Monte Carlo method), electronic games (e.g. for procedural generation), and cryptography. Cryptographic applications require the output not to be predictable from earlier outputs, and more elaborate algorithms, which do not inherit the linearity of simpler PRNGs, are needed. Good statist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cryptographic Primitives
Cryptography, or cryptology (from grc, , translit=kryptós "hidden, secret"; and ''graphein'', "to write", or ''-logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others. Core concepts related to information security ( data confidentiality, data integrity, authentication, and non-repudiation) are also central to cryptography. Practical applications of cryptography include electronic commerce, chip-based payment cards, digital currencies, computer passwords, and military communications. Cryptography prior to the modern age was effectively synonymous ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cryptographic Hash Functions
A cryptographic hash function (CHF) is a hash algorithm (a map of an arbitrary binary string to a binary string with fixed size of n bits) that has special properties desirable for cryptography: * the probability of a particular n-bit output result ( hash value) for a random input string ("message") is 2^ (like for any good hash), so the hash value can be used as a representative of the message; * finding an input string that matches a given hash value (a ''pre-image'') is unfeasible, unless the value is selected from a known pre-calculated dictionary ("rainbow table"). The ''resistance'' to such search is quantified as security strength, a cryptographic hash with n bits of hash value is expected to have a ''preimage resistance'' strength of n bits. A ''second preimage'' resistance strength, with the same expectations, refers to a similar problem of finding a second message that matches the given hash value when one message is already known; * finding any pair of different mes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]