HOME
*





Multi-master Bus
A multi-master bus is a computer bus in which there are multiple bus master nodes present on the bus. This is used when multiple nodes on the bus must initiate transfer. For example, direct memory access (DMA) is used to transfer data between peripherals and memory without the need to use the central processing unit (CPU). Some buses like I²C I2C (Inter-Integrated Circuit, ), alternatively known as I2C or IIC, is a synchronous, multi-controller/multi-target (master/slave), packet switched, single-ended, serial communication bus invented in 1982 by Philips Semiconductors. It is wide ... use multi-mastering inherently to allow any node to initiate a transfer with another node. Computer buses References {{Compu-network-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Bus
In computer architecture, a bus (shortened form of the Latin '' omnibus'', and historically also called data highway or databus) is a communication system that transfers data between components inside a computer, or between computers. This expression covers all related hardware components (wire, optical fiber, etc.) and software, including communication protocols. Early computer buses were parallel electrical wires with multiple hardware connections, but the term is now used for any physical arrangement that provides the same logical function as a parallel electrical busbar. Modern computer buses can use both parallel and bit serial connections, and can be wired in either a multidrop (electrical parallel) or daisy chain topology, or connected by switched hubs, as in the case of Universal Serial Bus (USB). Background and nomenclature Computer systems generally consist of three main parts: * The central processing unit (CPU) that processes data, * The memory that holds the p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bus Mastering
In computing, bus mastering is a feature supported by many bus architectures that enables a device connected to the bus to initiate direct memory access (DMA) transactions. It is also referred to as first-party DMA, in contrast with third-party DMA where a system DMA controller actually does the transfer. Some types of buses allow only one device (typically the CPU, or its proxy) to initiate transactions. Most modern bus architectures, such as PCI, allow multiple devices to bus master because it significantly improves performance for general-purpose operating systems. Some real-time operating systems prohibit peripherals from becoming bus masters, because the scheduler can no longer arbitrate for the bus and hence cannot provide deterministic latency. While bus mastering theoretically allows one peripheral device to directly communicate with another, in practice almost all peripherals master the bus exclusively to perform DMA to main memory. If multiple devices are able to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Direct Memory Access
Direct memory access (DMA) is a feature of computer systems and allows certain hardware subsystems to access main system memory independently of the central processing unit (CPU). Without DMA, when the CPU is using programmed input/output, it is typically fully occupied for the entire duration of the read or write operation, and is thus unavailable to perform other work. With DMA, the CPU first initiates the transfer, then it does other operations while the transfer is in progress, and it finally receives an interrupt from the DMA controller (DMAC) when the operation is done. This feature is useful at any time that the CPU cannot keep up with the rate of data transfer, or when the CPU needs to perform work while waiting for a relatively slow I/O data transfer. Many hardware systems use DMA, including disk drive controllers, graphics cards, network cards and sound cards. DMA is also used for intra-chip data transfer in multi-core processors. Computers that have DMA channels can trans ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Central Processing Unit
A central processing unit (CPU), also called a central processor, main processor or just processor, is the electronic circuitry that executes instructions comprising a computer program. The CPU performs basic arithmetic, logic, controlling, and input/output (I/O) operations specified by the instructions in the program. This contrasts with external components such as main memory and I/O circuitry, and specialized processors such as graphics processing units (GPUs). The form, design, and implementation of CPUs have changed over time, but their fundamental operation remains almost unchanged. Principal components of a CPU include the arithmetic–logic unit (ALU) that performs arithmetic and logic operations, processor registers that supply operands to the ALU and store the results of ALU operations, and a control unit that orchestrates the fetching (from memory), decoding and execution (of instructions) by directing the coordinated operations of the ALU, registers and other co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

I²C
I2C (Inter-Integrated Circuit, ), alternatively known as I2C or IIC, is a synchronous, multi-controller/multi-target (master/slave), packet switched, single-ended, serial communication bus invented in 1982 by Philips Semiconductors. It is widely used for attaching lower-speed peripheral ICs to processors and microcontrollers in short-distance, intra-board communication. Several competitors, such as Siemens, NEC, Texas Instruments, STMicroelectronics, Motorola, Nordic Semiconductor and Intersil, have introduced compatible I2C products to the market since the mid-1990s. System Management Bus (SMBus), defined by Intel in 1995, is a subset of I2C, defining a stricter usage. One purpose of SMBus is to promote robustness and interoperability. Accordingly, modern I2C systems incorporate some policies and rules from SMBus, sometimes supporting both I2C and SMBus, requiring only minimal reconfiguration either by commanding or output pin use. Applications I2C is appropriate for peri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]