HOME
*





Monadic Boolean Algebra
In abstract algebra, a monadic Boolean algebra is an algebraic structure ''A'' with signature :⟨·, +, ', 0, 1, ∃⟩ of type ⟨2,2,1,0,0,1⟩, where ⟨''A'', ·, +, ', 0, 1⟩ is a Boolean algebra. The monadic/unary operator ∃ denotes the existential quantifier, which satisfies the identities (using the received prefix notation for ∃): * ∃0 = 0 * ∃''x'' ≥ ''x'' * ∃(''x'' + ''y'') = ∃''x'' + ∃''y'' * ∃''x''∃''y'' = ∃(''x''∃''y''). ∃''x'' is the ''existential closure'' of ''x''. Dual to ∃ is the unary operator ∀, the universal quantifier, defined as ∀''x'' := (∃''x' '')'. A monadic Boolean algebra has a dual definition and notation that take ∀ as primitive and ∃ as defined, so that ∃''x'' := (∀''x'' ' )' . (Compare this with the definition of the dual Boolean algebra.) Hence, with this notation, an algebra ''A'' has signature ⟨·, +, ', 0, 1, ∀⟩, with ⟨''A'', ·, +, ', 0, 1& ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abstract Algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term ''abstract algebra'' was coined in the early 20th century to distinguish this area of study from older parts of algebra, and more specifically from elementary algebra, the use of variables to represent numbers in computation and reasoning. Algebraic structures, with their associated homomorphisms, form mathematical categories. Category theory is a formalism that allows a unified way for expressing properties and constructions that are similar for various structures. Universal algebra is a related subject that studies types of algebraic structures as single objects. For example, the structure of groups is a single object in universal algebra, which is called the ''variety of groups''. History Before the nineteenth century, algebra meant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Variety (universal Algebra)
In universal algebra, a variety of algebras or equational class is the class of all algebraic structures of a given signature satisfying a given set of identities. For example, the groups form a variety of algebras, as do the abelian groups, the rings, the monoids etc. According to #Birkhoff's_theorem, Birkhoff's theorem, a class of algebraic structures of the same signature is a variety if and only if it is closed under the taking of homomorphism, homomorphic images, subalgebras and Direct product#Direct product in universal algebra, (direct) products. In the context of category theory, a variety of algebras, together with its homomorphisms, forms a Category (mathematics), category; these are usually called ''finitary algebraic categories''. A ''covariety'' is the class of all F-coalgebra, coalgebraic structures of a given signature. Terminology A variety of algebras should not be confused with an algebraic variety, which means a set of solutions to a system of polynomial eq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Łukasiewicz–Moisil Algebra
Łukasiewicz–Moisil algebras (LM''n'' algebras) were introduced in the 1940s by Grigore Moisil (initially under the name of Łukasiewicz algebras) in the hope of giving algebraic semantics for the ''n''-valued Łukasiewicz logic. However, in 1956 Alan Rose discovered that for ''n'' ≥ 5, the Łukasiewicz–Moisil algebra does not model the Łukasiewicz logic. A faithful model for the ℵ0-valued (infinitely-many-valued) Łukasiewicz–Tarski logic was provided by C. C. Chang's MV-algebra, introduced in 1958. For the axiomatically more complicated (finite) ''n''-valued Łukasiewicz logics, suitable algebras were published in 1977 by Revaz Grigolia and called MV''n''-algebras. MV''n''-algebras are a subclass of LM''n''-algebras, and the inclusion is strict for ''n'' ≥ 5.Iorgulescu, A.: Connections between MV''n''-algebras and ''n''-valued Łukasiewicz-Moisil algebras—I. Discrete Math. 181, 155–177 (1998) In 1982 Roberto Cignoli published some additional constraints that a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kuratowski Closure Axioms
In topology and related branches of mathematics, the Kuratowski closure axioms are a set of axioms that can be used to define a topological structure on a set. They are equivalent to the more commonly used open set definition. They were first formalized by Kazimierz Kuratowski, and the idea was further studied by mathematicians such as Wacław Sierpiński and António Monteiro, among others. A similar set of axioms can be used to define a topological structure using only the dual notion of interior operator. Definition Kuratowski closure operators and weakenings Let X be an arbitrary set and \wp(X) its power set. A Kuratowski closure operator is a unary operation \mathbf:\wp(X) \to \wp(X) with the following properties: A consequence of \mathbf preserving binary unions is the following condition: In fact if we rewrite the equality in 4'' as an inclusion, giving the weaker axiom 4'''' (''subadditivity''): then it is easy to see that axioms 4''' and 4'''' together are equiv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Interior Algebra
In abstract algebra, an interior algebra is a certain type of algebraic structure that encodes the idea of the topological interior of a set. Interior algebras are to topology and the modal logic S4 what Boolean algebras are to set theory and ordinary propositional logic. Interior algebras form a variety of modal algebras. Definition An interior algebra is an algebraic structure with the signature :⟨''S'', ·, +, ′, 0, 1, I⟩ where :⟨''S'', ·, +, ′, 0, 1⟩ is a Boolean algebra and postfix I designates a unary operator, the interior operator, satisfying the identities: # ''x''I ≤ ''x'' # ''x''II = ''x''I # (''xy'')I = ''x''I''y''I # 1I = 1 ''x''I is called the interior of ''x''. The dual of the interior operator is the closure operator C defined by ''x''C = ((''x''′)I)′. ''x''C is called the closure of ''x''. By the principle of duality, the closure operator satisfies the identities: # ''x''C ≥ ''x'' # ''x''CC = ''x''C # (''x'' + ''y'')C = ''x''C + ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cylindric Algebra
In mathematics, the notion of cylindric algebra, invented by Alfred Tarski, arises naturally in the algebraization of first-order logic with equality. This is comparable to the role Boolean algebras play for propositional logic. Cylindric algebras are Boolean algebras equipped with additional cylindrification operations that model quantification and equality. They differ from polyadic algebras in that the latter do not model equality. Definition of a cylindric algebra A cylindric algebra of dimension \alpha (where \alpha is any ordinal number) is an algebraic structure (A,+,\cdot,-,0,1,c_\kappa,d_)_ such that (A,+,\cdot,-,0,1) is a Boolean algebra, c_\kappa a unary operator on A for every \kappa (called a ''cylindrification''), and d_ a distinguished element of A for every \kappa and \lambda (called a ''diagonal''), such that the following hold: : (C1) c_\kappa 0=0 : (C2) x\leq c_\kappa x : (C3) c_\kappa(x\cdot c_\kappa y)=c_\kappa x\cdot c_\kappa y : (C4) c_\kappa c_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Clopen Set
In topology, a clopen set (a portmanteau of closed-open set) in a topological space is a set which is both open and closed. That this is possible may seem counter-intuitive, as the common meanings of and are antonyms, but their mathematical definitions are not mutually exclusive. A set is closed if its complement is open, which leaves the possibility of an open set whose complement is also open, making both sets both open closed, and therefore clopen. As described by topologist James Munkres, unlike a door, "a set can be open, or closed, or both, or neither!" emphasizing that the meaning of "open"/"closed" for is unrelated to their meaning for (and so the open/closed door dichotomy does not transfer to open/closed sets). This contrast to doors gave the class of topological spaces known as " door spaces" their name. Examples In any topological space X, the empty set and the whole space X are both clopen. Now consider the space X which consists of the union of the two o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Synonym
A synonym is a word, morpheme, or phrase that means exactly or nearly the same as another word, morpheme, or phrase in a given language. For example, in the English language, the words ''begin'', ''start'', ''commence'', and ''initiate'' are all synonyms of one another: they are ''synonymous''. The standard test for synonymy is substitution: one form can be replaced by another in a sentence without changing its meaning. Words are considered synonymous in only one particular sense: for example, ''long'' and ''extended'' in the context ''long time'' or ''extended time'' are synonymous, but ''long'' cannot be used in the phrase ''extended family''. Synonyms with exactly the same meaning share a seme or denotational sememe, whereas those with inexactly similar meanings share a broader denotational or connotational sememe and thus overlap within a semantic field. The former are sometimes called cognitive synonyms and the latter, near-synonyms, plesionyms or poecilonyms. Lexicograph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modal Logic
Modal logic is a collection of formal systems developed to represent statements about necessity and possibility. It plays a major role in philosophy of language, epistemology, metaphysics, and natural language semantics. Modal logics extend other systems by adding unary operators \Diamond and \Box, representing possibility and necessity respectively. For instance the modal formula \Diamond P can be read as "possibly P" while \Box P can be read as "necessarily P". Modal logics can be used to represent different phenomena depending on what kind of necessity and possibility is under consideration. When \Box is used to represent epistemic necessity, \Box P states that P is epistemically necessary, or in other words that it is known. When \Box is used to represent deontic necessity, \Box P states that P is a moral or legal obligation. In the standard relational semantics for modal logic, formulas are assigned truth values relative to a ''possible world''. A formula's truth value at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Paul Halmos
Paul Richard Halmos ( hu, Halmos Pál; March 3, 1916 – October 2, 2006) was a Hungarian-born American mathematician and statistician who made fundamental advances in the areas of mathematical logic, probability theory, statistics, operator theory, ergodic theory, and functional analysis (in particular, Hilbert spaces). He was also recognized as a great mathematical expositor. He has been described as one of The Martians. Early life and education Born in Hungary into a Jewish family, Halmos arrived in the U.S. at 13 years of age. He obtained his B.A. from the University of Illinois, majoring in mathematics, but fulfilling the requirements for both a math and philosophy degree. He took only three years to obtain the degree, and was only 19 when he graduated. He then began a Ph.D. in philosophy, still at the Champaign–Urbana campus; but, after failing his masters' oral exams, he shifted to mathematics, graduating in 1938. Joseph L. Doob supervised his dissertation, titled ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

First-order Logic
First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists''"'' is a quantifier, while ''x'' is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic is usually a first-order logic together with a specified domain of discourse (over which the quantified variables range), finitely many functions from that domain to itself, finitely many predicates defined on that domain, and a set of ax ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Polyadic Algebra
Polyadic algebras (more recently called Halmos algebras) are algebraic structures introduced by Paul Halmos. They are related to first-order logic analogous to the relationship between Boolean algebras and propositional logic (see Lindenbaum–Tarski algebra). There are other ways to relate first-order logic to algebra, including Tarski's cylindric algebras (when equality is part of the logic) and Lawvere's functorial semantics (a categorical approach). References Further reading *Paul Halmos, ''Algebraic Logic'', Chelsea Publishing The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings ..., New York (1962) Algebraic logic {{mathlogic-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]