HOME





Maximum Variance Unfolding
Maximum Variance Unfolding (MVU), also known as Semidefinite Embedding (SDE), is an algorithm in computer science that uses semidefinite programming to perform non-linear dimensionality reduction of high-dimensional vectorial input data. It is motivated by the observation that kernel Principal Component Analysis (kPCA) does not reduce the data dimensionality, as it leverages the Kernel trick to non-linearly map the original data into an inner-product space. Algorithm MVU creates a mapping from the high dimensional input vectors to some low dimensional Euclidean vector space in the following steps: # A neighbourhood graph is created. Each input is connected with its k-nearest input vectors (according to Euclidean distance metric) and all k-nearest neighbors are connected with each other. If the data is sampled well enough, the resulting graph is a discrete approximation of the underlying manifold. # The neighbourhood graph is "unfolded" with the help of semidefinite programming ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of Rigour#Mathematics, mathematically rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can use Conditional (computer programming), conditionals to divert the code execution through various routes (referred to as automated decision-making) and deduce valid inferences (referred to as automated reasoning). In contrast, a Heuristic (computer science), heuristic is an approach to solving problems without well-defined correct or optimal results.David A. Grossman, Ophir Frieder, ''Information Retrieval: Algorithms and Heuristics'', 2nd edition, 2004, For example, although social media recommender systems are commonly called "algorithms", they actually rely on heuristics as there is no truly "correct" recommendation. As an e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gramian Matrix
In linear algebra, the Gram matrix (or Gramian matrix, Gramian) of a set of vectors v_1,\dots, v_n in an inner product space is the Hermitian matrix of inner products, whose entries are given by the inner product G_ = \left\langle v_i, v_j \right\rangle., p.441, Theorem 7.2.10 If the vectors v_1,\dots, v_n are the columns of matrix X then the Gram matrix is X^\dagger X in the general case that the vector coordinates are complex numbers, which simplifies to X^\top X for the case that the vector coordinates are real numbers. An important application is to compute linear independence: a set of vectors are linearly independent if and only if the Gram determinant (the determinant of the Gram matrix) is non-zero. It is named after Jørgen Pedersen Gram. Examples For finite-dimensional real vectors in \mathbb^n with the usual Euclidean dot product, the Gram matrix is G = V^\top V, where V is a matrix whose columns are the vectors v_k and V^\top is its transpose whose rows are the vect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computational Statistics
Computational statistics, or statistical computing, is the study which is the intersection of statistics and computer science, and refers to the statistical methods that are enabled by using computational methods. It is the area of computational science (or scientific computing) specific to the mathematical science of statistics. This area is fast developing. The view that the broader concept of computing must be taught as part of general statistical education is gaining momentum. As in Statistics, traditional statistics the goal is to transform raw data into knowledge,Edward Wegman, Wegman, Edward J. �Computational Statistics: A New Agenda for Statistical Theory and Practice.�� Journal of the Washington Academy of Sciences', vol. 78, no. 4, 1988, pp. 310–322. ''JSTOR'' but the focus lies on computer intensive statistical methods, such as cases with very large Sample size determination, sample size and non-homogeneous data sets. The terms 'computational statistics' and 'statis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Machine Learning Research
The ''Journal of Machine Learning Research'' is a peer-reviewed open access scientific journal covering machine learning. It was established in 2000 and the first editor-in-chief was Leslie Kaelbling. The current editors-in-chief are Francis Bach (Inria) and David Blei (Columbia University). History The journal was established as an open-access alternative to the journal ''Machine Learning''. In 2001, forty editorial board members of ''Machine Learning'' resigned, saying that in the era of the Internet, it was detrimental for researchers to continue publishing their papers in expensive journals with pay-access archives. The open access model employed by the ''Journal of Machine Learning Research'' allows authors to publish articles for free and retain copyright, while archives are freely available online. Print editions of the journal were published by MIT Press until 2004 and by Microtome Publishing thereafter. From its inception, the journal received no revenue from the pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Banff, Alberta
Banff is a resort town in Banff National Park, Alberta, Canada, in Alberta's Rockies along the Trans-Canada Highway, west of Calgary, east of Lake Louise, Alberta, Lake Louise, and above Banff was the first municipality to incorporate within a Canadian national park. The town is a member of the Calgary Metropolitan Region, Calgary Regional Partnership. Banff is one of Canada's most popular tourist destinations. Known for its mountainous surroundings and Banff Upper Hot Springs, hot springs, it is a destination for outdoor sports and hiking, Mountain biking, biking, scrambling and skiing. Sunshine Village, Mt Norquay, Ski Norquay and Lake Louise Ski Resort are nearby ski resorts within the national park. Toponymy The area was named Banff in 1884 by George Stephen, 1st Baron Mount Stephen, George Stephen, president of the Canadian Pacific Railway, recalling his birthplace near Banff, Aberdeenshire, Banff, Scotland. The Canadian Pacific built a series of grand hotels along the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Energy Minimization
In the field of computational chemistry, energy minimization (also called energy optimization, geometry minimization, or geometry optimization) is the process of finding an arrangement in space of a collection of atoms where, according to some computational model of chemical bonding, the net inter-atomic force on each atom is acceptably close to zero and the position on the potential energy surface (PES) is a stationary point (described later). The collection of atoms might be a single molecule, an ion, a condensed phase, a transition state or even a collection of any of these. The computational model of chemical bonding might, for example, be quantum mechanics. As an example, when optimizing the geometry of a water molecule, one aims to obtain the hydrogen-oxygen bond lengths and the hydrogen-oxygen-hydrogen bond angle which minimize the forces that would otherwise be pulling atoms together or pushing them apart. The motivation for performing a geometry optimization is the phys ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemannian Manifold
In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surfaces in three-dimensional space, such as ellipsoids and paraboloids, are all examples of Riemannian manifold, manifolds. Riemannian manifolds are named after German mathematician Bernhard Riemann, who first conceptualized them. Formally, a Riemannian metric (or just a metric) on a smooth manifold is a choice of inner product for each tangent space of the manifold. A Riemannian manifold is a smooth manifold together with a Riemannian metric. The techniques of differential and integral calculus are used to pull geometric data out of the Riemannian metric. For example, integration leads to the Riemannian distance function, whereas differentiation is used to define curvature and parallel transport. Any smooth surface in three-dimensional Eucl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Local Tangent Space Alignment
Local tangent space alignment (LTSA) is a method for manifold learning, which can efficiently learn a nonlinear embedding into low-dimensional coordinates from high-dimensional data, and can also reconstruct high-dimensional coordinates from embedding coordinates. It is based on the intuition that when a manifold is correctly unfolded, all of the tangent hyperplanes to the manifold will become aligned. It begins by computing the ''k''-nearest neighbors of every point. It computes the tangent space In mathematics, the tangent space of a manifold is a generalization of to curves in two-dimensional space and to surfaces in three-dimensional space in higher dimensions. In the context of physics the tangent space to a manifold at a point can be ... at every point by computing the ''d''-first principal components in each local neighborhood. It then optimizes to find an embedding that aligns the tangent spaces, but it ignores the label information conveyed by data samples, and th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isometry (other)
Isometry, in mathematics, refers to a distance-preserving transformation. Isometry may also refer to: * Isometry between quadratic spaces * Isometry group * Quasi-isometry * Dade isometry * Euclidean isometry * Euclidean plane isometry * Itō isometry See also * Isometric (other) The term ''isometric'' comes from the Greek for "having equal measurement". isometric may mean: * Cubic crystal system, also called isometric crystal system * Isometre, a rhythmic technique in music. * "Isometric (Intro)", a song by Madeon from ... * Isometries in physics {{mathdab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Locally Linear Embedding
Nonlinear dimensionality reduction, also known as manifold learning, is any of various related techniques that aim to project high-dimensional data, potentially existing across non-linear manifolds which cannot be adequately captured by linear decomposition methods, onto lower-dimensional latent manifolds, with the goal of either visualizing the data in the low-dimensional space, or learning the mapping (either from the high-dimensional space to the low-dimensional embedding or vice versa) itself. The techniques described below can be understood as generalizations of linear decomposition methods used for dimensionality reduction, such as singular value decomposition and principal component analysis. Applications of NLDR High dimensional data can be hard for machines to work with, requiring significant time and space for analysis. It also presents a challenge for humans, since it's hard to visualize or understand data in more than three dimensions. Reducing the dimensionality o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cholesky Decomposition
In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced ) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations. It was discovered by André-Louis Cholesky for real matrices, and posthumously published in 1924. When it is applicable, the Cholesky decomposition is roughly twice as efficient as the LU decomposition for solving systems of linear equations. Statement The Cholesky decomposition of a Hermitian positive-definite matrix , is a decomposition of the form \mathbf = \mathbf^, where is a lower triangular matrix with real and positive diagonal entries, and * denotes the conjugate transpose of . Every Hermitian positive-definite matrix (and thus also every real-valued symmetric positive-definite matrix) has a unique Cholesky decomposition. The converse holds trivially: if can be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nathan Linial
Nathan (Nati) Linial (; born 1953 in Haifa, Israel) is an Israeli mathematician and computer scientist, a professor in the Rachel and Selim Benin School of Computer Science and Engineering at the Hebrew University of Jerusalem, and an ISI highly cited researcher. Linial did his undergraduate studies at the Technion, and received his PhD in 1978 from the Hebrew University under the supervision of Micha Perles. He was a postgraduate researcher at the University of California, Los Angeles before returning to the Hebrew University as a faculty member. In 2012 he became a fellow of the American Mathematical Society. In 2019 he won the FOCS Test of Time Award for the paper "''Constant Depth Circuits, Fourier Transform, and Learnability''", co-authored with Yishay Mansour and Noam Nisan. Selected publications *. The paper won the 2013 Dijkstra Prize. In the words of the prize committee: "This paper has had a major impact on distributed message-passing algorithms. It focused a spotl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]