Matroid
In combinatorics, a branch of mathematics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats. In the language of partially ordered sets, a finite matroid is equivalent to a geometric lattice. Matroid theory borrows extensively from the terminology of both linear algebra and graph theory, largely because it is the abstraction of various notions of central importance in these fields. Matroids have found applications in geometry, topology, combinatorial optimization, network theory and coding theory. Definition There are many equivalent ( cryptomorphic) ways to define a (finite) matroid.A standard source for basic definitions and results about matroids is Oxley (1992). An older standard source is Welsh (1976). See Brylawsk ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hereditary Property (matroid)
In combinatorics, a branch of mathematics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats. In the language of partially ordered sets, a finite matroid is equivalent to a geometric lattice. Matroid theory borrows extensively from the terminology of both linear algebra and graph theory, largely because it is the abstraction of various notions of central importance in these fields. Matroids have found applications in geometry, topology, combinatorial optimization, network theory and coding theory. Definition There are many equivalent ( cryptomorphic) ways to define a (finite) matroid.A standard source for basic definitions and results about matroids is Oxley (1992). An older standard source is Welsh (1976). See Brylawski' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graphic Matroid
In the mathematical theory of matroids, a graphic matroid (also called a cycle matroid or polygon matroid) is a matroid whose independent sets are the forests in a given finite undirected graph. The dual matroids of graphic matroids are called co-graphic matroids or bond matroids. A matroid that is both graphic and co-graphic is sometimes called a planar matroid (but this should not be confused with matroids of rank 3, which generalize planar point configurations); these are exactly the graphic matroids formed from planar graphs. Definition A matroid may be defined as a family of finite sets (called the "independent sets" of the matroid) that is closed under subsets and that satisfies the "exchange property": if sets A and B are both independent, and A is larger than B, then there is an element x\in A\setminus B such that B\cup\ remains independent. If G is an undirected graph, and F is the family of sets of edges that form forests in G, then F is clearly closed under subsets (re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geometric Lattice
In the mathematics of matroids and lattices, a geometric lattice is a finite atomistic semimodular lattice, and a matroid lattice is an atomistic semimodular lattice without the assumption of finiteness. Geometric lattices and matroid lattices, respectively, form the lattices of flats of finite and infinite matroids, and every geometric or matroid lattice comes from a matroid in this way. Definition A lattice is a poset in which any two elements x and y have both a least upper bound, called the join or supremum, denoted by x\vee y, and a greatest lower bound, called the meet or infimum, denoted by x\wedge y. : The following definitions apply to posets in general, not just lattices, except where otherwise stated. * For a minimal element x, there is no element y such that y y or y y and there is no element z distinct from both x and y so that x > z > y. * A cover of a minimal element is called an atom. * A lattice is atomistic if every element is the supremum of some set of atom ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Matroid Rank
In the mathematical theory of matroids, the rank of a matroid is the maximum size of an independent set in the matroid. The rank of a subset ''S'' of elements of the matroid is, similarly, the maximum size of an independent subset of ''S'', and the rank function of the matroid maps sets of elements to their ranks. The rank function is one of the fundamental concepts of matroid theory via which matroids may be axiomatized. Matroid rank functions form an important subclass of the submodular set functions. The rank functions of matroids defined from certain other types of mathematical object such as undirected graphs, matrices, and field extensions are important within the study of those objects. Examples In all examples, ''E'' is the base set of the matroid, and ''B'' is some subset of ''E''. * Let ''M'' be the free matroid, where the independent sets are all subsets of ''E''. Then the rank function of ''M'' is simply: ''r''(''B'') = , ''B'', . * Let ''M'' be a uniform matroid ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cryptomorphism
In mathematics, two objects, especially systems of axioms or semantics for them, are called cryptomorphic if they are equivalent but not obviously equivalent. In particular, two definitions or axiomatizations of the ''same'' object are "cryptomorphic" if it is not obvious that they define the same object. Examples of cryptomorphic definitions abound in matroid theory and others can be found elsewhere, e.g., in group theory the definition of a group by a single operation of division, which is not obviously equivalent to the usual three "operations" of identity element, inverse, and multiplication. This word is a play on the many morphisms in mathematics, but "cryptomorphism" is only very distantly related to "isomorphism", "homomorphism", or "morphisms". The equivalence may in a cryptomorphism, if it is not actual identity, be informal, or may be formalized in terms of a bijection or equivalence of categories between the mathematical objects defined by the two cryptomorphic axiom s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Submodular Function
In mathematics, a submodular set function (also known as a submodular function) is a set function whose value, informally, has the property that the difference in the incremental value of the function that a single element makes when added to an input set decreases as the size of the input set increases. Submodular functions have a natural diminishing returns property which makes them suitable for many applications, including approximation algorithms, game theory (as functions modeling user preferences) and electrical networks. Recently, submodular functions have also found immense utility in several real world problems in machine learning and artificial intelligence, including automatic summarization, multi-document summarization, feature selection, active learning, sensor placement, image collection summarization and many other domains. Definition If \Omega is a finite set, a submodular function is a set function f:2^\rightarrow \mathbb, where 2^\Omega denotes the power set of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Closure Operator
In mathematics, a closure operator on a set ''S'' is a function \operatorname: \mathcal(S)\rightarrow \mathcal(S) from the power set of ''S'' to itself that satisfies the following conditions for all sets X,Y\subseteq S : Closure operators are determined by their closed sets, i.e., by the sets of the form cl(''X''), since the closure cl(''X'') of a set ''X'' is the smallest closed set containing ''X''. Such families of "closed sets" are sometimes called closure systems or "Moore families", in honor of E. H. Moore who studied closure operators in his 1910 ''Introduction to a form of general analysis'', whereas the concept of the closure of a subset originated in the work of Frigyes Riesz in connection with topological spaces. Though not formalized at the time, the idea of closure originated in the late 19th century with notable contributions by Ernst Schröder, Richard Dedekind and Georg Cantor. Closure operators are also called "hull operators", which prevents confusion with the "c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Combinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science. Combinatorics is well known for the breadth of the problems it tackles. Combinatorial problems arise in many areas of pure mathematics, notably in algebra, probability theory, topology, and geometry, as well as in its many application areas. Many combinatorial questions have historically been considered in isolation, giving an ''ad hoc'' solution to a problem arising in some mathematical context. In the later twentieth century, however, powerful and general theoretical methods were developed, making combinatorics into an independent branch of mathematics in its own right. One of the oldest and most accessible parts of combinatorics is gra ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Family Of Sets
In set theory and related branches of mathematics, a collection F of subsets of a given set S is called a family of subsets of S, or a family of sets over S. More generally, a collection of any sets whatsoever is called a family of sets, set family, or a set system. The term "collection" is used here because, in some contexts, a family of sets may be allowed to contain repeated copies of any given member, and in other contexts it may form a proper class rather than a set. A finite family of subsets of a finite set S is also called a ''hypergraph''. The subject of extremal set theory concerns the largest and smallest examples of families of sets satisfying certain restrictions. Examples The set of all subsets of a given set S is called the power set of S and is denoted by \wp(S). The power set \wp(S) of a given set S is a family of sets over S. A subset of S having k elements is called a k-subset of S. The k-subsets S^ of a set S form a family of sets. Let S = \. An ex ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abstract Simplicial Complex
In combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family. It is a purely combinatorial description of the geometric notion of a simplicial complex. Lee, John M., Introduction to Topological Manifolds, Springer 2011, , p153 For example, in a 2-dimensional simplicial complex, the sets in the family are the triangles (sets of size 3), their edges (sets of size 2), and their vertices (sets of size 1). In the context of matroids and greedoids, abstract simplicial complexes are also called independence systems. An abstract simplex can be studied algebraically by forming its Stanley–Reisner ring; this sets up a powerful relation between combinatorics and commutative algebra. Definitions A collection of non-empty finite subsets of a set ''S'' is called a set-family. A set-family is called an abstract simplicial c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Independence System
In combinatorics, combinatorial mathematics, an independence system is a pair (V, \mathcal), where is a finite Set (mathematics), set and is a collection of subsets of (called the independent sets or feasible sets) with the following properties: # The empty set is independent, i.e., \emptyset\in\mathcal. (Alternatively, at least one subset of is independent, i.e., \mathcal\neq\emptyset.) # Every subset of an independent set is independent, i.e., for each Y\subseteq X, we have X\in\mathcal\Rightarrow Y\in\mathcal. This is sometimes called the hereditary property, or downward-closedness. Another term for an independence system is an abstract simplicial complex. Relation to other concepts * A pair (V, \mathcal), where is a finite Set (mathematics), set and is a collection of subsets of is also called a hypergraph. When using this terminology, the elements in the set are called vertices and elements in the family are called hyperedges. So an independence system can be defin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Combinatorial Optimization
Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, where the set of feasible solutions is discrete or can be reduced to a discrete set. Typical combinatorial optimization problems are the travelling salesman problem ("TSP"), the minimum spanning tree problem ("MST"), and the knapsack problem. In many such problems, such as the ones previously mentioned, exhaustive search is not tractable, and so specialized algorithms that quickly rule out large parts of the search space or approximation algorithms must be resorted to instead. Combinatorial optimization is related to operations research, algorithm theory, and computational complexity theory. It has important applications in several fields, including artificial intelligence, machine learning, auction theory, software engineering, VLSI, applied mathematics and theoretical computer science. Some research literature considers discrete o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |