HOME
*



picture info

Magnetic Lens
thumb thumb A subtype of a magnetic lens ( quadrupole magnet) in the Maier-Leibnitz laboratory, Munich A magnetic lens is a device for the focusing or deflection of moving charged particles, such as electrons or ions, by use of the magnetic Lorentz force. Its strength can often be varied by usage of electromagnets. Magnetic lenses are used in diverse applications, from cathode ray tubes over electron microscopy to particle accelerators. Design A magnetic lens typically consists of several electromagnets arranged in a quadrupole (see quadrupole magnet), sextupole, or higher format; the electromagnetic coils are placed at the vertices of a square or another regular polygon. From this configuration a customized magnetic field can be formed to manipulate the particle beam. The passing particle is subjected to two vector forces H_Z (parallel to the core), and H_R (parallel to the radius of the lens). H_R causes the particle to spiral through the lens, and this spiraling expose ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Magnetic Lens
thumb thumb A subtype of a magnetic lens ( quadrupole magnet) in the Maier-Leibnitz laboratory, Munich A magnetic lens is a device for the focusing or deflection of moving charged particles, such as electrons or ions, by use of the magnetic Lorentz force. Its strength can often be varied by usage of electromagnets. Magnetic lenses are used in diverse applications, from cathode ray tubes over electron microscopy to particle accelerators. Design A magnetic lens typically consists of several electromagnets arranged in a quadrupole (see quadrupole magnet), sextupole, or higher format; the electromagnetic coils are placed at the vertices of a square or another regular polygon. From this configuration a customized magnetic field can be formed to manipulate the particle beam. The passing particle is subjected to two vector forces H_Z (parallel to the core), and H_R (parallel to the radius of the lens). H_R causes the particle to spiral through the lens, and this spiraling expose ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cathode Ray Tube
A cathode-ray tube (CRT) is a vacuum tube containing one or more electron guns, which emit electron beams that are manipulated to display images on a phosphorescent screen. The images may represent electrical waveforms ( oscilloscope), pictures (television set, computer monitor), radar targets, or other phenomena. A CRT on a television set is commonly called a picture tube. CRTs have also been used as memory devices, in which case the screen is not intended to be visible to an observer. The term ''cathode ray'' was used to describe electron beams when they were first discovered, before it was understood that what was emitted from the cathode was a beam of electrons. In CRT television sets and computer monitors, the entire front area of the tube is scanned repeatedly and systematically in a fixed pattern called a raster. In color devices, an image is produced by controlling the intensity of each of three electron beams, one for each additive primary color (red, green, and bl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Accelerator Physics
Accelerator physics is a branch of applied physics, concerned with designing, building and operating particle accelerators. As such, it can be described as the study of motion, manipulation and observation of relativistic charged particle beams and their interaction with accelerator structures by electromagnetic fields. It is also related to other fields: *Microwave engineering (for acceleration/deflection structures in the radio frequency range). *Optics with an emphasis on geometrical optics (beam focusing and bending) and laser physics (laser-particle interaction). *Computer technology with an emphasis on digital signal processing; e.g., for automated manipulation of the particle beam. *Plasma physics, for the description of intense beams. The experiments conducted with particle accelerators are not regarded as part of accelerator physics, but belong (according to the objectives of the experiments) to, e.g., particle physics, nuclear physics, condensed matter physics or m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quadrupole Mass Analyzer
The quadrupole mass analyzer, originally conceived by Nobel Laureate Wolfgang Paul and his student Helmut Steinwedel, also known as quadrupole mass filter, is one type of mass analyzer used in mass spectrometry. As the name implies, it consists of four cylindrical rods, set parallel to each other. In a quadrupole mass spectrometer (QMS) the quadrupole is the ''mass analyzer'' - the component of the instrument responsible for selecting sample ions based on their mass-to-charge ratio (''m/z''). Ions are separated in a quadrupole based on the stability of their trajectories in the oscillating electric fields that are applied to the rods. Principle of operation The quadrupole consists of four parallel metal rods. Each opposing rod pair is connected together electrically, and a radio frequency (RF) voltage with a DC offset voltage is applied between one pair of rods and the other. Ions travel down the quadrupole between the rods. Only ions of a certain mass-to-charge ratio will reach t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quadrupole Ion Trap
A quadrupole ion trap or paul trap is a type of ion trap that uses dynamic electric fields to trap charged particles. They are also called radio frequency (RF) traps or Paul traps in honor of Wolfgang Paul, who invented the device and shared the Nobel Prize in Physics in 1989 for this work. It is used as a component of a mass spectrometer or a trapped ion quantum computer. Overview A charged particle, such as an atomic or molecular ion, feels a force from an electric field. It is not possible to create a static configuration of electric fields that traps the charged particle in all three directions (this restriction is known as Earnshaw's theorem). It is possible, however, to create an ''average'' confining force in all three directions by use of electric fields that change in time. To do so, the confining and anti-confining directions are switched at a rate faster than it takes the particle to escape the trap. The traps are also called "radio frequency" traps because the switc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mass Spectrometry
Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a ''mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used in many different fields and is applied to pure samples as well as complex mixtures. A mass spectrum is a type of plot of the ion signal as a function of the mass-to-charge ratio. These spectra are used to determine the elemental or isotopic signature of a sample, the masses of particles and of molecules, and to elucidate the chemical identity or structure of molecules and other chemical compounds. In a typical MS procedure, a sample, which may be solid, liquid, or gaseous, is ionized, for example by bombarding it with a beam of electrons. This may cause some of the sample's molecules to break up into positively charged fragments or simply become positively charged without fragmenting. These ions (fragments) are then separated accordin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ion Beam
An ion beam is a type of charged particle beam consisting of ions. Ion beams have many uses in electronics manufacturing (principally ion implantation) and other industries. A variety of ion beam sources exists, some derived from the mercury vapor thrusters developed by NASA in the 1960s. The most common ion beams are of singly-charged ions. Units Ion current density is typically measured in mA/cm^2, and ion energy in eV. The use of eV is convenient for converting between voltage and energy, especially when dealing with singly-charged ion beams, as well as converting between energy and temperature (1 eV = 11600 K). Broad-beam ion sources Most commercial applications use two popular types of ion source, gridded and gridless, which differ in current and power characteristics and the ability to control ion trajectories. In both cases electrons are needed to generate an ion beam. The most common electron emitters are hot filament and hollow cathode. Gridded ion source In a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Electron Beam Technology
Since the mid-20th century, electron-beam technology has provided the basis for a variety of novel and specialized applications in semiconductor manufacturing, microelectromechanical systems, nanoelectromechanical systems, and microscopy. Mechanism Free electrons in a vacuum can be manipulated by electric and magnetic fields to form a fine beam. Where the beam collides with solid-state matter, electrons are converted into heat or kinetic energy. This concentration of energy in a small volume of matter can be precisely controlled electronically, which brings many advantages. Applications The rapid increase of temperature at the location of impact can quickly melt a target material. In extreme working conditions, the rapid temperature increase can even lead to evaporation, making an electron beam an excellent tool in heating applications, such as welding. Electron beam technology is used in cable-isolation treatment, in electron lithography of sub-micrometer and nano-dimensional ima ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electron Optics
Electron optics is a mathematical framework for the calculation of electron trajectories along electromagnetic fields. The term ''optics'' is used because magnetic and electrostatic lenses act upon a charged particle beam similarly to optical lenses upon a light beam. Electron optics calculations are crucial for the design of electron microscopes and particle accelerators. In the paraxial approximation, trajectory calculations can be carried out using ray transfer matrix analysis. Electron properties Electrons are charged particles (point charges with rest mass) with spin 1/2 (hence they are fermions). Electrons can be accelerated by suitable electric (or magnetic) fields, thereby acquiring kinetic energy. Given sufficient voltage, the electron can be accelerated sufficiently fast to exhibit measurable relativistic effects. According to wave particle duality, electrons can also be considered as matter waves with properties such as wavelength, phase and amplitude. Geometric e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Charged Particle Beam
A charged particle beam is a spatially localized group of electrically charged particles that have approximately the same position, kinetic energy (resulting in the same velocity), and direction. The kinetic energies of the particles are much larger than the energies of particles at ambient temperature. The high energy and directionality of charged particle beams make them useful for many applications in particle physics (see Particle beam#Applications and Electron-beam technology). Such beams can be split into two main classes: # ''unbunched beams'' (''coasting beams'' or ''DC beams''), which have no longitudinal substructure in the direction of beam motion. # ''bunched beams'', in which the particles are distributed into pulses (bunches) of particles. Bunched beams are most common in modern facilities, since the most modern particle accelerators require bunched beams for acceleration. Assuming a normal distribution of particle positions and impulses, a charged particle bea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]