Logic Optimization
   HOME
*



picture info

Logic Optimization
Logic optimization is a process of finding an equivalent representation of the specified logic circuit under one or more specified constraints. This process is a part of a logic synthesis applied in digital electronics and integrated circuit design. Generally, the circuit is constrained to a minimum chip area meeting a predefined response delay. The goal of logic optimization of a given circuit is to obtain the smallest logic circuit that evaluates to the same values as the original one. The smaller circuit with the same function is cheaper, takes less space, consumes less power, have shorter latency, and minimizes risks of unexpected cross-talk, hazard of delayed signal processing, and other issues present at the nano-scale level of metallic structures on an integrated circuit. In terms of Boolean algebra, the optimization of a complex boolean expression is a process of finding a simpler one, which would upon evaluation ultimately produce the same results as the original o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logic Circuit
A logic gate is an idealized or physical device implementing a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output. Depending on the context, the term may refer to an ideal logic gate, one that has for instance zero rise time and unlimited fan-out, or it may refer to a non-ideal physical device (see Ideal and real op-amps for comparison). Logic gates are primarily implemented using diodes or transistors acting as electronic switches, but can also be constructed using vacuum tubes, electromagnetic relays (relay logic), fluidic logic, pneumatic logic, optics, molecules, or even mechanical elements. Now, most logic gates are made from MOSFETs (metal–oxide–semiconductor field-effect transistors). With amplification, logic gates can be cascaded in the same way that Boolean functions can be composed, allowing the construction of a physical model of all of Boolean logic, and therefore, all of the algorithms and ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Logic Friday
The ESPRESSO logic minimizer is a computer program using heuristic and specific algorithms for efficiently reducing the complexity of digital logic gate circuits. ESPRESSO-I was originally developed at IBM by Robert K. Brayton et al. in 1982. and improved as ESPRESSO-II in 1984. Richard L. Rudell later published the variant ESPRESSO-MV in 1986 and ESPRESSO-EXACT in 1987. Espresso has inspired many derivatives. Introduction Electronic devices are composed of numerous blocks of digital circuits, the combination of which performs the required task. The efficient implementation of logic functions in the form of logic gate circuits (such that no more logic gates are used than are necessary) is necessary to minimize production costs, and/or maximize a device's performance. Designing digital logic circuits All digital systems are composed of two elementary functions: memory elements for storing information, and combinational circuits that transform that information. State machin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Heuristic
A heuristic (; ), or heuristic technique, is any approach to problem solving or self-discovery that employs a practical method that is not guaranteed to be optimal, perfect, or rational, but is nevertheless sufficient for reaching an immediate, short-term goal or approximation. Where finding an optimal solution is impossible or impractical, heuristic methods can be used to speed up the process of finding a satisfactory solution. Heuristics can be mental shortcuts that ease the cognitive load of making a decision. Examples that employ heuristics include using trial and error, a rule of thumb or an educated guess. Heuristics are the strategies derived from previous experiences with similar problems. These strategies depend on using readily accessible, though loosely applicable, information to control problem solving in human beings, machines and abstract issues. When an individual applies a heuristic in practice, it generally performs as expected. However it can alternativ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

SAT Solver
The SAT ( ) is a standardized test widely used for college admissions in the United States. Since its debut in 1926, its name and scoring have changed several times; originally called the Scholastic Aptitude Test, it was later called the Scholastic Assessment Test, then the SAT I: Reasoning Test, then the SAT Reasoning Test, then simply the SAT. The SAT is wholly owned, developed, and published by the College Board, a private, not-for-profit organization in the United States. It is administered on behalf of the College Board by the Educational Testing Service, which until recently developed the SAT as well. The test is intended to assess students' readiness for college. The SAT was originally designed not to be aligned with high school curricula, but several adjustments were made for the version of the SAT introduced in 2016, and College Board president David Coleman has said that he also wanted to make the test reflect more closely what students learn in high school with the ne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Satisfiability
In mathematical logic, a formula is ''satisfiable'' if it is true under some assignment of values to its variables. For example, the formula x+3=y is satisfiable because it is true when x=3 and y=6, while the formula x+1=x is not satisfiable over the integers. The dual concept to satisfiability is validity; a formula is ''valid'' if every assignment of values to its variables makes the formula true. For example, x+3=3+x is valid over the integers, but x+3=y is not. Formally, satisfiability is studied with respect to a fixed logic defining the syntax of allowed symbols, such as first-order logic, second-order logic or propositional logic. Rather than being syntactic, however, satisfiability is a semantic property because it relates to the ''meaning'' of the symbols, for example, the meaning of + in a formula such as x+1=x. Formally, we define an interpretation (or model) to be an assignment of values to the variables and an assignment of meaning to all other non-logical symbols, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Petrick's Method
In Boolean algebra In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values ''true'' and ''false'', usually denoted 1 and 0, whereas i ..., Petrick's method (also known as ''Petrick function'' or ''branch-and-bound'' method) is a technique described by Stanley R. Petrick (1931–2006) in 1956 for determining all minimum sum-of-products solutions from a prime implicant chart. Petrick's method is very tedious for large charts, but it is easy to implement on a computer. The method was improved by Insley B. Pyne and Edward Joseph McCluskey in 1962. Algorithm # Reduce the prime implicant chart by eliminating the essential prime implicant rows and the corresponding columns. # Label the rows of the reduced prime implicant chart P_1, P_2, P_3, P_4, etc. # Form a logical function P which is true when all the columns are covered. ''P'' consists of a produ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Time Complexity
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor. Since an algorithm's running time may vary among different inputs of the same size, one commonly considers the worst-case time complexity, which is the maximum amount of time required for inputs of a given size. Less common, and usually specified explicitly, is the average-case complexity, which is the average of the time taken on inputs of a given size (this makes sense because there are only a finite number of possible inputs of a given size). In both cases, the time complexity is generally expresse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Polynomial Hierarchy
In computational complexity theory, the polynomial hierarchy (sometimes called the polynomial-time hierarchy) is a hierarchy of complexity classes that generalize the classes NP and co-NP. Each class in the hierarchy is contained within PSPACE. The hierarchy can be defined using oracle machines or alternating Turing machines. It is a resource-bounded counterpart to the arithmetical hierarchy and analytical hierarchy from mathematical logic. The union of the classes in the hierarchy is denoted PH. Classes within the hierarchy have complete problems (with respect to polynomial-time reductions) which ask if quantified Boolean formulae hold, for formulae with restrictions on the quantifier order. It is known that equality between classes on the same level or consecutive levels in the hierarchy would imply a "collapse" of the hierarchy to that level. Definitions There are multiple equivalent definitions of the classes of the polynomial hierarchy. Oracle definition For the oracle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maurice Karnaugh
Maurice Karnaugh (; October 4, 1924 – November 8, 2022) was an American physicist, mathematician, computer scientist, and inventor known for the Karnaugh map used in Boolean algebra. Career Karnaugh studied mathematics and physics at City College of New York (1944 to 1948) and transferred to Yale University to complete his B.Sc. (1949), M.Sc. (1950) and Ph.D. in physics with a thesis on ''The Theory of Magnetic Resonance and Lambda-Type Doubling in Nitric-Oxide'' (1952). Karnaugh worked at Bell Labs (1952 to 1966), developing the Karnaugh map (1954) as well as patents for PCM encoding and magnetic logic circuits and coding. He later worked at IBM's Federal Systems Division in Gaithersburg (1966 to 1970) and at the IBM Thomas J. Watson Research Center (1970 to 1994), studying multistage interconnection networks. Karnaugh was elected an IEEE Fellow in 1976, and held an adjunct position at Polytechnic University of New York (now New York University Tandon School of Enginee ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Karnaugh Map
The Karnaugh map (KM or K-map) is a method of simplifying Boolean algebra expressions. Maurice Karnaugh introduced it in 1953 as a refinement of Edward W. Veitch's 1952 Veitch chart, which was a rediscovery of Allan Marquand's 1881 ''logical diagram'' aka Marquand diagram but with a focus now set on its utility for switching circuits. Veitch charts are also known as Marquand–Veitch diagrams or, rarely, as Svoboda charts, and Karnaugh maps as Karnaugh–Veitch maps (KV maps). The Karnaugh map reduces the need for extensive calculations by taking advantage of humans' pattern-recognition capability. It also permits the rapid identification and elimination of potential race conditions. The required Boolean results are transferred from a truth table onto a two-dimensional grid where, in Karnaugh maps, the cells are ordered in Gray code, and each cell position represents one combination of input conditions. Cells are also known as minterms, while each cell value represents th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

John Venn
John Venn, Fellow of the Royal Society, FRS, Fellow of the Society of Antiquaries of London, FSA (4 August 1834 – 4 April 1923) was an English mathematician, logician and philosopher noted for introducing Venn diagrams, which are used in logic, set theory, probability, statistics, and computer science. In 1866, Venn published ''The Logic of Chance'', a groundbreaking book which espoused the frequency theory of probability, arguing that probability should be determined by how often something is forecast to occur as opposed to "educated" assumptions. Venn then further developed George Boole's theories in the 1881 work ''Symbolic Logic'', where he highlighted what would become known as Venn diagrams. Life and career John Venn was born on 4 August 1834 in Kingston upon Hull, Yorkshire, to Martha Sykes and Rev. Henry Venn (Church Missionary Society), Henry Venn, who was the rector of the parish of Drypool. His mother died when he was three years old. Venn was descended from a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Venn Diagram
A Venn diagram is a widely used diagram style that shows the logical relation between sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple set relationships in probability, logic, statistics, linguistics and computer science. A Venn diagram uses simple closed curves drawn on a plane to represent sets. Very often, these curves are circles or ellipses. Similar ideas had been proposed before Venn. Christian Weise in 1712 (''Nucleus Logicoe Wiesianoe'') and Leonhard Euler ('' Letters to a German Princess'') in 1768, for instance, came up with similar ideas. The idea was popularised by Venn in ''Symbolic Logic'', Chapter V "Diagrammatic Representation", 1881. Details A Venn diagram may also be called a ''set diagram'' or ''logic diagram''. It is a diagram that shows ''all'' possible logical relations between a finite collection of different sets. These diagrams depict elements as points in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]