List Of Algebraic Topology Topics
   HOME
*





List Of Algebraic Topology Topics
This is a list of algebraic topology topics, by Wikipedia page. See also: *Glossary of algebraic topology *topology glossary *List of topology topics *List of general topology topics *List of geometric topology topics * Publications in topology * Topological property Homology (mathematics) *Simplex *Simplicial complex **Polytope **Triangulation **Barycentric subdivision **Simplicial approximation theorem **Abstract simplicial complex **Simplicial set ** Simplicial category *Chain (algebraic topology) *Betti number *Euler characteristic **Genus **Riemann–Hurwitz formula *Singular homology *Cellular homology *Relative homology *Mayer–Vietoris sequence *Excision theorem *Universal coefficient theorem *Cohomology **List of cohomology theories ** Cocycle class **Cup product **Cohomology ring **De Rham cohomology **Čech cohomology **Alexander–Spanier cohomology **Intersection cohomology **Lusternik–Schnirelmann category *Poincaré duality *Fundamental class *''Applications'' ** ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up to homeomorphism, though usually most classify up to Homotopy#Homotopy equivalence and null-homotopy, homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches of algebraic topology Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy gro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simplicial Category (other)
In mathematics, simplicial category may refer to: * Simplex category, the category of finite ordinals and order-preserving functions * Simplicially enriched category, a category enriched over the category of simplicial sets * Simplicial object In mathematics, a simplicial set is an object composed of ''simplices'' in a specific way. Simplicial sets are higher-dimensional generalizations of directed graphs, partially ordered sets and categories. Formally, a simplicial set may be defined a ...
in the category of categories {{mathematical disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Cohomology Theories
This is a list of some of the ordinary and generalized (or extraordinary) homology and cohomology theories in algebraic topology that are defined on the categories of CW complexes or spectra. For other sorts of homology theories see the links at the end of this article. Notation *''S'' = π = ''S''''0'' is the sphere spectrum. *''S''''n'' is the spectrum of the ''n''-dimensional sphere *''S''''n''''Y'' = ''S''''n''∧''Y'' is the ''n''th suspension of a spectrum ''Y''. * 'X'',''Y''is the abelian group of morphisms from the spectrum ''X'' to the spectrum ''Y'', given (roughly) as homotopy classes of maps. * 'X'',''Y''sub>''n'' = 'S''''n''''X'',''Y''* 'X'',''Y''sub>''*'' is the graded abelian group given as the sum of the groups 'X'',''Y''sub>''n''. *π''n''(''X'') = 'S''''n'', ''X''= 'S'', ''X''sub>''n'' is the ''n''th stable homotopy group of ''X''. *π''*''(''X'') is the sum of the groups π''n''(''X''), and is called the coefficient ring of ''X'' when ''X'' is a rin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cohomology
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory. From its beginning in topology, this idea became a dominant method in the mathematics of the second half of the twentieth century. From the initial idea of homology as a method of constructing algebraic invariants of topological spaces, the range of applications of homology and cohomology theories has spread throughout geometry and algebra. The terminology tends to hide the fact that cohomology, a contravariant theory, is more natural than homology in many applications. At a basic level, this has to do ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Universal Coefficient Theorem
In algebraic topology, universal coefficient theorems establish relationships between homology groups (or cohomology groups) with different coefficients. For instance, for every topological space , its ''integral homology groups'': : completely determine its ''homology groups with coefficients in'' , for any abelian group : : Here might be the simplicial homology, or more generally the singular homology: the result itself is a pure piece of homological algebra about chain complexes of free abelian groups. The form of the result is that other coefficients may be used, at the cost of using a Tor functor. For example it is common to take to be , so that coefficients are modulo 2. This becomes straightforward in the absence of 2-torsion in the homology. Quite generally, the result indicates the relationship that holds between the Betti numbers of and the Betti numbers with coefficients in a field . These can differ, but only when the characteristic of is a prime number fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Excision Theorem
In algebraic topology, a branch of mathematics, the excision theorem is a theorem about relative homology and one of the Eilenberg–Steenrod axioms. Given a topological space X and subspaces A and U such that U is also a subspace of A, the theorem says that under certain circumstances, we can cut out (excise) U from both spaces such that the relative homologies of the pairs (X \setminus U,A \setminus U ) into (X, A) are isomorphic. This assists in computation of singular homology groups, as sometimes after excising an appropriately chosen subspace we obtain something easier to compute. Theorem Statement If U\subseteq A \subseteq X are as above, we say that U can be excised if the inclusion map of the pair (X \setminus U,A \setminus U ) into (X, A) induces an isomorphism on the relative homologies: The theorem states that if the closure of U is contained in the interior of A, then U can be excised. Often, subspaces that do not satisfy this containment criterion still ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mayer–Vietoris Sequence
In mathematics, particularly algebraic topology and homology theory, the Mayer–Vietoris sequence is an algebraic tool to help compute algebraic invariants of topological spaces, known as their homology and cohomology groups. The result is due to two Austrian mathematicians, Walther Mayer and Leopold Vietoris. The method consists of splitting a space into subspaces, for which the homology or cohomology groups may be easier to compute. The sequence relates the (co)homology groups of the space to the (co)homology groups of the subspaces. It is a natural long exact sequence, whose entries are the (co)homology groups of the whole space, the direct sum of the (co)homology groups of the subspaces, and the (co)homology groups of the intersection of the subspaces. The Mayer–Vietoris sequence holds for a variety of cohomology and homology theories, including simplicial homology and singular cohomology. In general, the sequence holds for those theories satisfying the Eilenberg–Steenr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Relative Homology
In algebraic topology, a branch of mathematics, the (singular) homology of a topological space relative to a subspace is a construction in singular homology, for topological pair, pairs of spaces. The relative homology is useful and important in several ways. Intuitively, it helps determine what part of an absolute homology group comes from which subspace. Definition Given a subspace A\subseteq X, one may form the short exact sequence :0\to C_\bullet(A) \to C_\bullet(X)\to C_\bullet(X) /C_\bullet(A) \to 0 , where C_\bullet(X) denotes the singular chains on the space ''X''. The boundary map on C_\bullet(X) descends to C_\bullet(A) and therefore induces a boundary map \partial'_\bullet on the quotient. If we denote this quotient by C_n(X,A):=C_n(X)/C_n(A), we then have a complex :\cdots\longrightarrow C_n(X,A) \xrightarrow C_(X,A) \longrightarrow \cdots . By definition, the th relative homology group of the pair of spaces (X,A) is :H_n(X,A) := \ker\partial'_n/\operatorname\par ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cellular Homology
In mathematics, cellular homology in algebraic topology is a homology theory for the category of CW-complexes. It agrees with singular homology, and can provide an effective means of computing homology modules. Definition If X is a CW-complex with n-skeleton, ''n''-skeleton X_ , the cellular-homology modules are defined as the homology groups ''Hi'' of the cellular chain complex : \cdots \to (X_,X_) \to (X_,X_) \to (X_,X_) \to \cdots, where X_ is taken to be the empty set. The group : (X_,X_) is Free module, free abelian, with generators that can be identified with the n -cells of X . Let e_^ be an n -cell of X , and let \chi_^: \partial e_^ \cong \mathbb^ \to X_ be the attaching map. Then consider the composition : \chi_^: \mathbb^ \, \stackrel \, \partial e_^ \, \stackrel \, X_ \, \stackrel \, X_ / \left( X_ \setminus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Singular Homology
In algebraic topology, singular homology refers to the study of a certain set of algebraic invariants of a topological space ''X'', the so-called homology groups H_n(X). Intuitively, singular homology counts, for each dimension ''n'', the ''n''-dimensional holes of a space. Singular homology is a particular example of a homology theory, which has now grown to be a rather broad collection of theories. Of the various theories, it is perhaps one of the simpler ones to understand, being built on fairly concrete constructions (see also the related theory simplicial homology). In brief, singular homology is constructed by taking maps of the standard ''n''-simplex to a topological space, and composing them into formal sums, called singular chains. The boundary operation – mapping each ''n''-dimensional simplex to its (''n''−1)-dimensional boundary – induces the singular chain complex. The singular homology is then the homology of the chain complex. The resulting ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Riemann–Hurwitz Formula
In mathematics, the Riemann–Hurwitz formula, named after Bernhard Riemann and Adolf Hurwitz, describes the relationship of the Euler characteristics of two surfaces when one is a ''ramified covering'' of the other. It therefore connects ramification with algebraic topology, in this case. It is a prototype result for many others, and is often applied in the theory of Riemann surfaces (which is its origin) and algebraic curves. Statement For a compact, connected, orientable surface S, the Euler characteristic \chi(S) is :\chi(S)=2-2g, where ''g'' is the genus (the ''number of handles''), since the Betti numbers are 1, 2g, 1, 0, 0, \dots. In the case of an (''unramified'') covering map of surfaces :\pi\colon S' \to S that is surjective and of degree N, we have the formula :\chi(S') = N\cdot\chi(S). That is because each simplex of S should be covered by exactly N in S', at least if we use a fine enough triangulation of S, as we are entitled to do since the Euler characteristic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Genus (mathematics)
In mathematics, genus (plural genera) has a few different, but closely related, meanings. Intuitively, the genus is the number of "holes" of a surface. A sphere has genus 0, while a torus has genus 1. Topology Orientable surfaces The genus of a connected, orientable surface is an integer representing the maximum number of cuttings along non-intersecting closed simple curves without rendering the resultant manifold disconnected. It is equal to the number of handles on it. Alternatively, it can be defined in terms of the Euler characteristic ''χ'', via the relationship ''χ'' = 2 − 2''g'' for closed surfaces, where ''g'' is the genus. For surfaces with ''b'' boundary components, the equation reads ''χ'' = 2 − 2''g'' − ''b''. In layman's terms, it's the number of "holes" an object has ("holes" interpreted in the sense of doughnut holes; a hollow sphere would be considered as having zero holes in this sense). A torus has 1 such h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]