Linear Matroid
   HOME
*



picture info

Linear Matroid
In the mathematical theory of matroids, a matroid representation is a family of vectors whose linear independence relation is the same as that of a given matroid. Matroid representations are analogous to group representations; both types of representation provide abstract algebraic structures (matroids and groups respectively) with concrete descriptions in terms of linear algebra. A linear matroid is a matroid that has a representation, and an ''F''-linear matroid (for a field ''F'') is a matroid that has a representation using a vector space over ''F''. Matroid representation theory studies the existence of representations and the properties of linear matroids. Definitions A (finite) matroid (E,\mathcal) is defined by a finite set E (the elements of the matroid) and a non-empty family \mathcal of the subsets of E, called the independent sets of the matroid. It is required to satisfy the properties that every subset of an independent set is itself independent, and that if one ind ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matroid
In combinatorics, a branch of mathematics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats. In the language of partially ordered sets, a finite matroid is equivalent to a geometric lattice. Matroid theory borrows extensively from the terminology of both linear algebra and graph theory, largely because it is the abstraction of various notions of central importance in these fields. Matroids have found applications in geometry, topology, combinatorial optimization, network theory and coding theory. Definition There are many equivalent ( cryptomorphic) ways to define a (finite) matroid.A standard source for basic definitions and results about matroids is Oxley (1992). An older standard source is Welsh (1976). See Brylawsk ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Vámos Matroid
In mathematics, the Vámos matroid or Vámos cube is a matroid over a set of eight elements that cannot be represented as a matrix over any field. It is named after English mathematician Peter Vámos, who first described it in an unpublished manuscript in 1968. Definition The Vámos matroid has eight elements, which may be thought of as the eight vertices of a cube or cuboid. The matroid has rank 4: all sets of three or fewer elements are independent, and 65 of the 70 possible sets of four elements are also independent. The five exceptions are four-element circuits in the matroid. Four of these five circuits are formed by faces of the cuboid (omitting two opposite faces). The fifth circuit connects two opposite edges of the cuboid, each of which is shared by two of the chosen four faces. Another way of describing the same structure is that it has two elements for each vertex of the diamond graph, and a four-element circuit for each edge of the diamond graph. Properties *The Vá ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rota's Conjecture
Rota's excluded minors conjecture is one of a number of conjectures made by mathematician Gian-Carlo Rota. It is considered to be an important problem by some members of the structural combinatorics community. Rota conjectured in 1971 that, for every finite field, the family of matroids that can be represented over that field has only finitely many excluded minors. A proof of the conjecture has been announced by Geelen, Gerards, and Whittle. Statement of the conjecture If S is a set of points in a vector space defined over a field F, then the linearly independent subsets of S form the independent sets of a matroid M; S is said to be a representation of any matroid isomorphic to M. Not every matroid has a representation over every field, for instance, the Fano plane is representable only over fields of characteristic two. Other matroids are representable over no fields at all. The matroids that are representable over a particular field form a proper subclass of all matroids. A m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Totally Unimodular Matrix
In mathematics, a unimodular matrix ''M'' is a square integer matrix having determinant +1 or −1. Equivalently, it is an integer matrix that is invertible over the integers: there is an integer matrix ''N'' that is its inverse (these are equivalent under Cramer's rule). Thus every equation , where ''M'' and ''b'' both have integer components and ''M'' is unimodular, has an integer solution. The ''n'' × ''n'' unimodular matrices form a group called the ''n'' × ''n'' general linear group over \mathbb, which is denoted \operatorname_n(\mathbb). Examples of unimodular matrices Unimodular matrices form a subgroup of the general linear group under matrix multiplication, i.e. the following matrices are unimodular: * Identity matrix * The inverse of a unimodular matrix * The product of two unimodular matrices Other examples include: * Pascal matrices * Permutation matrices * the three transformation matrices in the ternary tree of primitive Pythagore ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dual Matroid
In matroid theory, the dual of a matroid M is another matroid M^\ast that has the same elements as M, and in which a set is independent if and only if M has a basis set disjoint from it... Matroid duals go back to the original paper by Hassler Whitney defining matroids.. Reprinted in , pp. 55–79. See in particular section 11, "Dual matroids", pp. 521–524. They generalize to matroids the notions of plane graph duality. Basic properties Duality is an involution: for all M, (M^\ast)^\ast=M. An alternative definition of the dual matroid is that its basis sets are the complements of the basis sets of M. The basis exchange axiom, used to define matroids from their bases, is self-complementary, so the dual of a matroid is necessarily a matroid. The flats of M are complementary to the cyclic sets (unions of circuits) of M^\ast, and vice versa. If r is the rank function of a matroid M on ground set E, then the rank function of the dual matroid is r^\ast(S)=r(E \setminus S)+, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fano Plane
In finite geometry, the Fano plane (after Gino Fano) is a finite projective plane with the smallest possible number of points and lines: 7 points and 7 lines, with 3 points on every line and 3 lines through every point. These points and lines cannot exist with this pattern of incidences in Euclidean geometry, but they can be given coordinates using the finite field with two elements. The standard notation for this plane, as a member of a family of projective spaces, is . Here stands for "projective geometry", the first parameter is the geometric dimension (it is a plane, of dimension 2) and the second parameter is the order (the number of points per line, minus one). The Fano plane is an example of a finite incidence structure, so many of its properties can be established using combinatorial techniques and other tools used in the study of incidence geometries. Since it is a projective space, algebraic techniques can also be effective tools in its study. Homogeneous coordinat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Regular Matroid
In mathematics, a regular matroid is a matroid that can be represented over all fields. Definition A matroid is defined to be a family of subsets of a finite set, satisfying certain axioms. The sets in the family are called "independent sets". One of the ways of constructing a matroid is to select a finite set of vectors in a vector space, and to define a subset of the vectors to be independent in the matroid when it is linearly independent in the vector space. Every family of sets constructed in this way is a matroid, but not every matroid can be constructed in this way, and the vector spaces over different fields lead to different sets of matroids that can be constructed from them. A matroid M is regular when, for every field F, M can be represented by a system of vectors over F.. Properties If a matroid is regular, so is its dual matroid, and so is every one of its minors. Every direct sum of regular matroids remains regular. Every graphic matroid (and every co-graphic matro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transactions Of The American Mathematical Society
The ''Transactions of the American Mathematical Society'' is a monthly peer-reviewed scientific journal of mathematics published by the American Mathematical Society. It was established in 1900. As a requirement, all articles must be more than 15 printed pages. See also * ''Bulletin of the American Mathematical Society'' * '' Journal of the American Mathematical Society'' * ''Memoirs of the American Mathematical Society'' * ''Notices of the American Mathematical Society'' * ''Proceedings of the American Mathematical Society'' External links * ''Transactions of the American Mathematical Society''on JSTOR JSTOR (; short for ''Journal Storage'') is a digital library founded in 1995 in New York City. Originally containing digitized back issues of academic journals, it now encompasses books and other primary sources as well as current issues of j ... American Mathematical Society academic journals Mathematics journals Publications established in 1900 {{math-journal-st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matroid Minor
In the mathematical theory of matroids, a minor of a matroid ''M'' is another matroid ''N'' that is obtained from ''M'' by a sequence of restriction and contraction operations. Matroid minors are closely related to graph minors, and the restriction and contraction operations by which they are formed correspond to edge deletion and edge contraction operations in graphs. The theory of matroid minors leads to structural decompositions of matroids, and characterizations of matroid families by forbidden minors, analogous to the corresponding theory in graphs. Definitions If ''M'' is a matroid on the set ''E'' and ''S'' is a subset of ''E'', then the restriction of ''M'' to ''S'', written ''M'' , ''S'', is the matroid on the set ''S'' whose independent sets are the independent sets of ''M'' that are contained in ''S''. Its circuits are the circuits of ''M'' that are contained in ''S'' and its rank function is that of ''M'' restricted to subsets of ''S''. If ''T'' is an independent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uniform Matroid
In mathematics, a uniform matroid is a matroid in which the independent sets are exactly the sets containing at most ''r'' elements, for some fixed integer ''r''. An alternative definition is that every permutation of the elements is a symmetry. Definition The uniform matroid U^r_n is defined over a set of n elements. A subset of the elements is independent if and only if it contains at most r elements. A subset is a basis if it has exactly r elements, and it is a circuit if it has exactly r+1 elements. The rank of a subset S is \min(, S, ,r) and the rank of the matroid is r. A matroid of rank r is uniform if and only if all of its circuits have exactly r+1 elements. The matroid U^2_n is called the n-point line. Duality and minors The dual matroid of the uniform matroid U^r_n is another uniform matroid U^_n. A uniform matroid is self-dual if and only if r=n/2. Every minor of a uniform matroid is uniform. Restricting a uniform matroid U^r_n by one element (as long as r 0) prod ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




GF(2)
(also denoted \mathbb F_2, or \mathbb Z/2\mathbb Z) is the finite field of two elements (GF is the initialism of ''Galois field'', another name for finite fields). Notations and \mathbb Z_2 may be encountered although they can be confused with the notation of -adic integers. is the field with the smallest possible number of elements, and is unique if the additive identity and the multiplicative identity are denoted respectively and , as usual. The elements of may be identified with the two possible values of a bit and to the boolean values ''true'' and ''false''. It follows that is fundamental and ubiquitous in computer science and its logical foundations. Definition GF(2) is the unique field with two elements with its additive and multiplicative identities respectively denoted and . Its addition is defined as the usual addition of integers but modulo 2 and corresponds to the table below: If the elements of GF(2) are seen as boolean values, then the addition is th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod when is a prime number. The ''order'' of a finite field is its number of elements, which is either a prime number or a prime power. For every prime number and every positive integer there are fields of order p^k, all of which are isomorphic. Finite fields are fundamental in a number of areas of mathematics and computer science, including number theory, algebraic geometry, Galois theory, finite geometry, cryptography and coding theory. Properties A finite field is a finite set which is a field; this means that multiplication, addition, subtraction and division (excluding division by zero) are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]