Lambda Particle
   HOME
*



picture info

Lambda Particle
The lambda baryons (Λ) are a family of subatomic hadron particles containing one up quark, one down quark, and a third quark from a higher flavour generation, in a combination where the quantum wave function changes sign upon the flavour of any two quarks being swapped (thus slightly different from a neutral sigma baryon, ). They are thus baryons, with total isospin of 0, and have either neutral electric charge or the elementary charge +1. Overview The lambda baryon was first discovered in October 1950, by V. D. Hopper and S. Biswas of the University of Melbourne, as a neutral V particle with a proton as a decay product, thus correctly distinguishing it as a baryon, rather than a meson, i.e. different in kind from the K meson discovered in 1947 by Rochester and Butler; they were produced by cosmic rays and detected in photographic emulsions flown in a balloon at . Though the particle was expected to live for , it actually survived for . The property that caused it to live so ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fermion
In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and leptons and all composite particles made of an odd number of these, such as all baryons and many atoms and nuclei. Fermions differ from bosons, which obey Bose–Einstein statistics. Some fermions are elementary particles (such as electrons), and some are composite particles (such as protons). For example, according to the spin-statistics theorem in relativistic quantum field theory, particles with integer spin are bosons. In contrast, particles with half-integer spin are fermions. In addition to the spin characteristic, fermions have another specific property: they possess conserved baryon or lepton quantum numbers. Therefore, what is usually referred to as the spin-statistics relation is, in fact, a spin statistics-quantum numb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quark Structure Lambda Baryon
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly observable matter is composed of up quarks, down quarks and electrons. Owing to a phenomenon known as ''color confinement'', quarks are never found in isolation; they can be found only within hadrons, which include baryons (such as protons and neutrons) and mesons, or in quark–gluon plasmas. There is also the theoretical possibility of more exotic phases of quark matter. For this reason, much of what is known about quarks has been drawn from observations of hadrons. Quarks have various intrinsic properties, including electric charge, mass, color charge, and spin. They are the only elementary particles in the Standard Model of particle physics to experience all four fundamental interactions, also known as ''fundamental forces'' (electrom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pauli Exclusion Principle
In quantum mechanics, the Pauli exclusion principle states that two or more identical particles with half-integer spins (i.e. fermions) cannot occupy the same quantum state within a quantum system simultaneously. This principle was formulated by Austrian physicist Wolfgang Pauli in 1925 for electrons, and later extended to all fermions with his spin–statistics theorem of 1940. In the case of electrons in atoms, it can be stated as follows: it is impossible for two electrons of a poly-electron atom to have the same values of the four quantum numbers: ''n'', the principal quantum number; ', the azimuthal quantum number; ''m'', the magnetic quantum number; and ''ms'', the spin quantum number. For example, if two electrons reside in the same orbital, then their ''n'', ', and ''m'' values are the same; therefore their ''ms'' must be different, and thus the electrons must have opposite half-integer spin projections of 1/2 and −1/2. Particles with an integer spin, or bosons, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hypernucleus
A hypernucleus is similar to a conventional atomic nucleus, but contains at least one hyperon in addition to the normal protons and neutrons. Hyperons are a category of baryon particles that carry non-zero strangeness quantum number, which is conserved by the strong and electromagnetic interactions. A variety of reactions give access to depositing one or more units of strangeness in a nucleus. Hypernuclei containing the lightest hyperon, the lambda (Λ), tend to be more tightly bound than normal nuclei, though they can decay via the weak force with a mean lifetime of around . Sigma (Σ) hypernuclei have been sought, as have doubly-strange nuclei containing xi baryons (Ξ) or two Λ's. Nomenclature Hypernuclei are named in terms of their atomic number and baryon number, as in normal nuclei, plus the hyperon(s) which are listed in a left subscript of the symbol, with the caveat that atomic number is interpreted as the total charge of the hypernucleus, including charged hypero ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hyperon
In particle physics, a hyperon is any baryon containing one or more strange quarks, but no charm, bottom, or top quark. This form of matter may exist in a stable form within the core of some neutron stars. Hyperons are sometimes generically represented by the symbol Y. History and research The first research into hyperons happened in the 1950s and spurred physicists on to the creation of an organized classification of particles. The term was coined by French physicist Louis Leprince-Ringuet in 1953, and announced for the first time at the cosmic ray conference at Bagnères de Bigorre in July of that year, agreed upon by Leprince-Ringuet, Bruno Rossi, C.F. Powell, William B. Fretter and Bernard Peters. Today, research in this area is carried out on data taken at many facilities around the world, including CERN, Fermilab, SLAC, JLAB, Brookhaven National Laboratory, KEK, GSI and others. Physics topics include searches for CP violation, measurements of spin, studies of exci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thomas Jefferson National Accelerator Facility
Thomas Jefferson National Accelerator Facility (TJNAF), commonly called Jefferson Lab or JLab, is a US National Laboratory located in Newport News, Virginia. Its stated mission is "to provide forefront scientific facilities, opportunities and leadership essential for discovering the fundamental structure of nuclear matter; to partner in industry to apply its advanced technology; and to serve the nation and its communities through education and public outreach." Since June 1, 2006, it has been operated by Jefferson Science Associates, LLC, a limited liability company created by Southeastern Universities Research Association and PAE Applied Technologies. Until 1996 it was known as the Continuous Electron Beam Accelerator Facility (CEBAF); commonly, this name is still used for the main accelerator. Founded in 1984, Jefferson Lab employs more than 750 people, and more than 2,000 scientists from around the world have conducted research using the facility. History The facility ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nuclear Emulsion
A nuclear emulsion plate is a type of particle detector first used in nuclear and particle physics experiments in the early decades of the 20th century. https://cds.cern.ch/record/1728791/files/vol6-issue5-p083-e.pdf''The Study of Elementary Particles by the Photographic Method'', C.F.Powell, P.H.Fowler, D.H.Perkins: Pergamon Press, New York, 1959.Walter H. Barkas, ''Nuclear Research Emulsions I. Techniques and Theory'', in ''Pure and Applied Physics: A Series of Monographs and Textbooks, Vol. 15'', Academic Press, New York and London, 1963. http://becquerel.jinr.ru/text/books/Barkas_NUCL_RES_EMULSIONS.pdf It is a modified form of photographic plate that can be used to record and investigate fast charged particles like alpha-particles, nucleons, leptons or mesons. After exposing and developing the emulsion, single particle tracks can be observed and measured using a microscope. Description The nuclear emulsion plate is a modified form of photographic plate, coated with a thick ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neutrino
A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small ('' -ino'') that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles excluding massless particles. The weak force has a very short range, the gravitational interaction is extremely weak due to the very small mass of the neutrino, and neutrinos do not participate in the strong interaction. Thus, neutrinos typically pass through normal matter unimpeded and undetected. Weak interactions create neutrinos in one of three leptonic flavors: electron neutrinos muon neutrinos (), or tau neutrinos (), in association with the corresponding charged lepton. Although neutrinos were long believed to be massless, it is now known that there are three discrete ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eric Burhop
Eric Henry Stoneley Burhop, (31 January 191122 January 1980) was an Australian physicist and humanitarian. A graduate of the University of Melbourne, Burhop was awarded an 1851 Exhibition Scholarship to study at the Cavendish Laboratory under Lord Rutherford. Under the supervision of Mark Oliphant, he investigated nuclear fusion. He produced a non-relativistic theory of the Auger effect in 1935, followed by a relativistic treatment the following year. He later wrote a monograph on the subject. He returned to the University of Melbourne as a lecturer in 1936, and helped Professor Thomas Laby build up the physics department there. During the Second World War, he worked in the Radiophysics Laboratory in Sydney, where he produced a laboratory model of a cavity magnetron. In September 1942, he returned to Melbourne as the officer in charge of the Radar Research Laboratory, where he continued the development of cavity magnetrons and reflex klystrons for radar sets. In May 1944, he ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fermilab
Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics. Since 2007, Fermilab has been operated by the Fermi Research Alliance, a joint venture of the University of Chicago, and the Universities Research Association (URA). Fermilab is a part of the Illinois Technology and Research Corridor. Fermilab's Main Injector, two miles (3.3 km) in circumference, is the laboratory's most powerful particle accelerator. The accelerator complex that feeds the Main Injector is under upgrade, and construction of the first building for the new PIP-II linear accelerator began in 2020. Until 2011, Fermilab was the home of the 6.28 km (3.90 mi) circumference Tevatron accelerator. The ring-shaped tunnels of the Tevatron and the Main Injector are visible from the air and by satellite. Fermilab aims to become a world center in neutri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kaon
KAON (Karlsruhe ontology) is an ontology infrastructure developed by the University of Karlsruhe and the Research Center for Information Technologies in Karlsruhe. Its first incarnation was developed in 2002 and supported an enhanced version of RDF ontologies. Several tools like the graphical ontology editor OIModeler or the KAON Server were based on KAON. There are ontology learning companion tools which take non-annotated natural language text as input: TextToOnto (KAON-based) and Text2Onto (KAON2-based). Text2Onto is based on the Probabilistic Ontology Model (POM). In 2005, the first version of KAON2 was released, offering fast reasoning support for OWL ontologies. KAON2 is not backward-compatible with KAON. KAON2 is developed as a joint effort of the Information Process Engineering (IPE) at the Research Center for Information Technologies (FZI), the Institute of Applied Informatics and Formal Description Methods (AIFB) at the University of Karlsruhe, and the Information Ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Meson
In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, they have a meaningful physical size, a diameter of roughly one femtometre (10 m), which is about 0.6 times the size of a proton or neutron. All mesons are unstable, with the longest-lived lasting for only a few hundredths of a microsecond. Heavier mesons decay to lighter mesons and ultimately to stable electrons, neutrinos and photons. Outside the nucleus, mesons appear in nature only as short-lived products of very high-energy collisions between particles made of quarks, such as cosmic rays (high-energy protons and neutrons) and baryonic matter. Mesons are routinely produced artificially in cyclotrons or other particle accelerators in the collisions of protons, antiprotons, or other particles. Higher-energy (more massive) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]