Logical Atomism
Logical atomism is a philosophical view that originated in the early 20th century with the development of analytic philosophy. Its principal exponent was the British philosopher Bertrand Russell. It is also widely held that the early works of his Austrian-born pupil and colleague, Ludwig Wittgenstein, defend a version of logical atomism. Some philosophers in the Vienna Circle were also influenced by logical atomism (particularly Rudolf Carnap, who was deeply sympathetic to some of its philosophical aims, especially in his earlier works). Gustav Bergmann also developed a form of logical atomism that focused on an ideal phenomenalistic language, particularly in his discussions of J.O. Urmson's work on analysis. The name for this kind of theory was coined in March 1911 by Russell, in a work published in French titled "Le Réalisme analytique" (published in translation as "Analytic Realism" in Volume 6 of ''The Collected Papers of Bertrand Russell''). Russell was developing and r ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Analytic Philosophy
Analytic philosophy is a branch and tradition of philosophy using analysis, popular in the Western world and particularly the Anglosphere, which began around the turn of the 20th century in the contemporary era in the United Kingdom, United States, Canada, Australia, New Zealand, and Scandinavia, and continues today. Analytic philosophy is often contrasted with continental philosophy, coined as a catch-all term for other methods prominent in Europe. Central figures in this historical development of analytic philosophy are Gottlob Frege, Bertrand Russell, G. E. Moore, and Ludwig Wittgenstein. Other important figures in its history include the logical positivists (particularly Rudolf Carnap), W. V. O. Quine, and Karl Popper. After the decline of logical positivism, Saul Kripke, David Lewis, and others led a revival in metaphysics. Elizabeth Anscombe, Peter Geach, Anthony Kenny and others brought analytic approach to Thomism. Analytic philosophy is characterized ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Karl Weierstrass
Karl Theodor Wilhelm Weierstrass (german: link=no, Weierstraß ; 31 October 1815 – 19 February 1897) was a German mathematician often cited as the "father of modern analysis". Despite leaving university without a degree, he studied mathematics and trained as a school teacher, eventually teaching mathematics, physics, botany and gymnastics. He later received an honorary doctorate and became professor of mathematics in Berlin. Among many other contributions, Weierstrass formalized the definition of the continuity of a function, proved the intermediate value theorem and the Bolzano–Weierstrass theorem, and used the latter to study the properties of continuous functions on closed bounded intervals. Biography Weierstrass was born into a Roman Catholic family in Ostenfelde, a village near Ennigerloh, in the Province of Westphalia. Weierstrass was the son of Wilhelm Weierstrass, a government official, and Theodora Vonderforst both of whom were catholic Rhinelanders. His ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Universal (metaphysics)
In metaphysics, a universal is what particular things have in common, namely characteristics or qualities. In other words, universals are repeatable or recurrent entities that can be instantiated or exemplified by many particular things. For example, suppose there are two chairs in a room, each of which is green. These two chairs both share the quality of " chairness", as well as greenness or the quality of being green; in other words, they share a "universal". There are three major kinds of qualities or characteristics: types or kinds (e.g. mammal), properties (e.g. short, strong), and relations (e.g. father of, next to). These are all different types of universals. Paradigmatically, universals are ''abstract'' (e.g. humanity), whereas particulars are ''concrete'' (e.g. the personhood of Socrates). However, universals are not necessarily abstract and particulars are not necessarily concrete. For example, one might hold that numbers are particular yet abstract objects. Likew ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Particular
In metaphysics, particulars or individuals are usually contrasted with universals. Universals concern features that can be exemplified by various different particulars. Particulars are often seen as concrete, spatiotemporal entities as opposed to abstract entities, such as properties or numbers. There are, however, theories of ''abstract particulars'' or ''tropes''. For example, Socrates is a particular (there's only one Socrates-the-teacher-of-Plato and one cannot make copies of him, e.g., by cloning him, without introducing new, distinct particulars). Redness, by contrast, is not a particular, because it is abstract and multiply instantiated (for example a bicycle, an apple, and a given woman's hair can all be red). In nominalist view everything is particular. Universals in each moment of time from point of view of an observer is the collection of particulars that participates it (even a void collection). Overview Sybil WolframSybil Wolfram, ''Philosophical Logic'', Routledge, Lon ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Statement (logic)
In logic, the term statement is variously understood to mean either: #a meaningful declarative sentence that is true or false, or #a proposition. Which is the ''assertion'' that is made by (i.e., the meaning of) a true or false declarative sentence. In the latter case, a statement is distinct from a sentence in that a sentence is only one formulation of a statement, whereas there may be many other formulations expressing the same statement. Overview Philosopher of language, Peter Strawson advocated the use of the term "statement" in sense (b) in preference to proposition. Strawson used the term "Statement" to make the point that two declarative sentences can make the same statement if they say the same thing in different ways. Thus in the usage advocated by Strawson, "All men are mortal." and "Every man is mortal." are two different sentences that make the same statement. In either case a statement is viewed as a truth bearer. Examples of sentences that are (or make ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Atomic Fact
In logic and analytic philosophy, an atomic sentence is a type of declarative sentence which is either true or false (may also be referred to as a proposition, statement or truthbearer) and which cannot be broken down into other simpler sentences. For example, "The dog ran" is an atomic sentence in natural language, whereas "The dog ran and the cat hid" is a molecular sentence in natural language. From a logical analysis point of view, the truth or falsity of sentences in general is determined by only two things: the logical form of the sentence and the truth or falsity of its simple sentences. This is to say, for example, that the truth of the sentence "John is Greek and John is happy" is a function of the meaning of " and", and the truth values of the atomic sentences "John is Greek" and "John is happy". However, the truth or falsity of an atomic sentence is not a matter that is within the scope of logic itself, but rather whatever art or science the content of the atomic sente ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Definite Descriptions
In formal semantics and philosophy of language, a definite description is a denoting phrase in the form of "the X" where X is a noun-phrase or a singular common noun. The definite description is ''proper'' if X applies to a unique individual or object. For example: " the first person in space" and " the 42nd President of the United States of America", are proper. The definite descriptions "the person in space" and "the Senator from Ohio" are ''improper'' because the noun phrase X applies to more than one thing, and the definite descriptions "the first man on Mars" and "the Senator from some Country" are ''improper'' because X applies to nothing. Improper descriptions raise some difficult questions about the law of excluded middle, denotation, modality, and mental content. Russell's analysis As France is currently a republic, it has no king. Bertrand Russell pointed out that this raises a puzzle about the truth value of the sentence "The present King of France is bald." The ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Non-existence
Existence is the ability of an entity to interact with reality. In philosophy, it refers to the ontological property of being. Etymology The term ''existence'' comes from Old French ''existence'', from Medieval Latin ''existentia/exsistentia'', from Latin ''existere'', to come forth, be manifest, ''ex + sistere'', to stand. Context in philosophy Materialism holds that the only things that exist are matter and energy, that all things are composed of material, that all actions require energy, and that all phenomena (including consciousness) are the result of the interaction of matter. Dialectical materialism does not make a distinction between being and existence, and defines it as the objective reality of various forms of matter. Idealism holds that the only things that exist are thoughts and ideas, while the material world is secondary. In idealism, existence is sometimes contrasted with transcendence, the ability to go beyond the limits of existence. As a form of epist ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Existence
Existence is the ability of an entity to interact with reality. In philosophy, it refers to the ontological property of being. Etymology The term ''existence'' comes from Old French ''existence'', from Medieval Latin ''existentia/exsistentia'', from Latin ''existere'', to come forth, be manifest, ''ex + sistere'', to stand. Context in philosophy Materialism holds that the only things that exist are matter and energy, that all things are composed of material, that all actions require energy, and that all phenomena (including consciousness) are the result of the interaction of matter. Dialectical materialism does not make a distinction between being and existence, and defines it as the objective reality of various forms of matter. Idealism holds that the only things that exist are thoughts and ideas, while the material world is secondary. In idealism, existence is sometimes contrasted with transcendence, the ability to go beyond the limits of existence. As a form of epi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alexius Meinong
Alexius Meinong Ritter von Handschuchsheim (17 July 1853 – 27 November 1920) was an Austrian philosopher, a realist known for his unique ontology. He also made contributions to philosophy of mind and theory of value. Life Alexius Meinong's father was officer Anton von Meinong (1799–1870), who was granted the hereditary title of Ritter in 1851 and reached the rank of Major General in 1858 before retiring in 1859. From 1868 to 1870, Meinong studied at the Akademisches Gymnasium, Vienna. In 1870, he entered the University of Vienna law school where he was drawn to Carl Menger's lectures on economics. In summer 1874, he earned a doctorate in history by writing a thesis on Arnold of Brescia. It was during the winter term (1874–1875) that he began to focus on history and philosophy. Meinong became a pupil of Franz Brentano, who was then a recent addition to the philosophical faculty. Meinong would later claim that his mentor did not directly influence his shift into ph ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
The Principles Of Mathematics
''The Principles of Mathematics'' (''PoM'') is a 1903 book by Bertrand Russell, in which the author presented his famous paradox and argued his thesis that mathematics and logic are identical. The book presents a view of the foundations of mathematics and Meinongianism and has become a classic reference. It reported on developments by Giuseppe Peano, Mario Pieri, Richard Dedekind, Georg Cantor, and others. In 1905 Louis Couturat published a partial French translation that expanded the book's readership. In 1937 Russell prepared a new introduction saying, "Such interest as the book now possesses is historical, and consists in the fact that it represents a certain stage in the development of its subject." Further editions were printed in 1938, 1951, 1996, and 2009. Contents ''The Principles of Mathematics'' consists of 59 chapters divided into seven parts: indefinables in mathematics, number, quantity, order, infinity and continuity, space, matter and motion. In chapt ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logicism
In the philosophy of mathematics, logicism is a programme comprising one or more of the theses that — for some coherent meaning of 'logic' — mathematics is an extension of logic, some or all of mathematics is reducible to logic, or some or all of mathematics may be modelled in logic. Bertrand Russell and Alfred North Whitehead championed this programme, initiated by Gottlob Frege and subsequently developed by Richard Dedekind and Giuseppe Peano. Overview Dedekind's path to logicism had a turning point when he was able to construct a model satisfying the axioms characterizing the real numbers using certain sets of rational numbers. This and related ideas convinced him that arithmetic, algebra and analysis were reducible to the natural numbers plus a "logic" of classes. Furthermore by 1872 he had concluded that the naturals themselves were reducible to sets and mappings. It is likely that other logicists, most importantly Frege, were also guided by the new theories of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |