Log Structure
In algebraic geometry, a log structure provides an abstract context to study semistable schemes, and in particular the notion of logarithmic form, logarithmic differential form and the related Hodge theory, Hodge-theoretic concepts. This idea has applications in the theory of moduli spaces, in deformation theory and Fontaine's p-adic Hodge theory, among others. Motivation The idea is to study some algebraic variety (or scheme (mathematics), scheme) ''U'' which is smooth morphism, smooth but not necessarily proper morphism, proper by embedding it into ''X'', which is proper, and then looking at certain sheaves on ''X''. The problem is that the subsheaf of \mathcal_X consisting of functions whose restriction to ''U'' is invertible is not a sheaf of rings (as adding two non-vanishing functions could provide one which vanishes), and we only get a sheaf of submonoids of \mathcal_X , multiplicatively. Remembering this additional structure on ''X'' corresponds to remembering the inclu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Discrete Valuation Ring
In abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal. This means a DVR is an integral domain ''R'' which satisfies any one of the following equivalent conditions: # ''R'' is a local principal ideal domain, and not a field. # ''R'' is a valuation ring with a value group isomorphic to the integers under addition. # ''R'' is a local Dedekind domain and not a field. # ''R'' is a Noetherian local domain whose maximal ideal is principal, and not a field.https://mathoverflow.net/a/155639/114772 # ''R'' is an integrally closed Noetherian local ring with Krull dimension one. # ''R'' is a principal ideal domain with a unique non-zero prime ideal. # ''R'' is a principal ideal domain with a unique irreducible element ( up to multiplication by units). # ''R'' is a unique factorization domain with a unique irreducible element (up to multiplication by units). # ''R'' is Noetherian, not a field, and every nonzero fractio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Log Geometry
Log most often refers to: * Trunk (botany), the stem and main wooden axis of a tree, called logs when cut ** Logging, cutting down trees for logs ** Firewood, logs used for fuel ** Lumber or timber, converted from wood logs * Logarithm, in mathematics Log, LOG or LoG may also refer to: Arts, entertainment and media * ''Log'' (magazine), an architectural magazine * ''The Log'', a boating and fishing newspaper published by the Duncan McIntosh Company * Lamb of God (band) or LoG, an American metal band * The Log, an electric guitar by Les Paul * Log, a fictional product in ''The Ren & Stimpy Show'' * The League of Gentlemen or LoG, a British comedy show. Places * Log, Russia, the name of several places * Log, Slovenia, the name of several places Science and mathematics *Logarithm, a mathematical function * Log file, a computer file in which events are recorded * Laplacian of Gaussian or LoG, an algorithm used in digital image processing Other uses * Logbook, or log, a record ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logarithmic Form
In contexts including complex manifolds and algebraic geometry, a logarithmic differential form is a meromorphic differential form with poles of a certain kind. The concept was introduced by Deligne. Let ''X'' be a complex manifold, ''D'' ⊂ ''X'' a divisor, and ω a holomorphic ''p''-form on ''X''−''D''. If ω and ''d''ω have a pole of order at most one along ''D'', then ω is said to have a logarithmic pole along ''D''. ω is also known as a logarithmic ''p''-form. The logarithmic ''p''-forms make up a subsheaf of the meromorphic ''p''-forms on ''X'' with a pole along ''D'', denoted :\Omega^p_X(\log D). In the theory of Riemann surfaces, one encounters logarithmic one-forms which have the local expression :\omega = \frac =\left(\frac + \frac\right)dz for some meromorphic function (resp. rational function) f(z) = z^mg(z) , where ''g'' is holomorphic and non-vanishing at 0, and ''m'' is the order of ''f'' at ''0''. That is, for some open covering, there are local represent ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Galois Representation
In mathematics, a Galois module is a ''G''-module, with ''G'' being the Galois group of some extension of fields. The term Galois representation is frequently used when the ''G''-module is a vector space over a field or a free module over a ring in representation theory, but can also be used as a synonym for ''G''-module. The study of Galois modules for extensions of local or global fields and their group cohomology is an important tool in number theory. Examples *Given a field ''K'', the multiplicative group (''Ks'')× of a separable closure of ''K'' is a Galois module for the absolute Galois group. Its second cohomology group is isomorphic to the Brauer group of ''K'' (by Hilbert's theorem 90, its first cohomology group is zero). *If ''X'' is a smooth proper scheme over a field ''K'' then the ℓ-adic cohomology groups of its geometric fibre are Galois modules for the absolute Galois group of ''K''. Ramification theory Let ''K'' be a valued field (with valuation denoted ''v'') ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Crystalline Cohomology
In mathematics, crystalline cohomology is a Weil cohomology theory for schemes ''X'' over a base field ''k''. Its values ''H''''n''(''X''/''W'') are modules over the ring ''W'' of Witt vectors over ''k''. It was introduced by and developed by . Crystalline cohomology is partly inspired by the ''p''-adic proof in of part of the Weil conjectures and is closely related to the algebraic version of de Rham cohomology that was introduced by Grothendieck (1963). Roughly speaking, crystalline cohomology of a variety ''X'' in characteristic ''p'' is the de Rham cohomology of a smooth lift of ''X'' to characteristic 0, while de Rham cohomology of ''X'' is the crystalline cohomology reduced mod ''p'' (after taking into account higher ''Tor''s). The idea of crystalline cohomology, roughly, is to replace the Zariski open sets of a scheme by infinitesimal thickenings of Zariski open sets with divided power structures. The motivation for this is that it can then be calculated by taking a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Moduli Space
In mathematics, in particular algebraic geometry, a moduli space is a geometric space (usually a scheme or an algebraic stack) whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such spaces frequently arise as solutions to classification problems: If one can show that a collection of interesting objects (e.g., the smooth algebraic curves of a fixed genus) can be given the structure of a geometric space, then one can parametrize such objects by introducing coordinates on the resulting space. In this context, the term "modulus" is used synonymously with "parameter"; moduli spaces were first understood as spaces of parameters rather than as spaces of objects. A variant of moduli spaces is formal moduli. Motivation Moduli spaces are spaces of solutions of geometric classification problems. That is, the points of a moduli space correspond to solutions of geometric problems. Here different solutions are identified if they a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mixed Hodge Structure
In algebraic geometry, a mixed Hodge structure is an algebraic structure containing information about the cohomology of general algebraic varieties. It is a generalization of a Hodge structure, which is used to study smooth projective varieties. In mixed Hodge theory, where the decomposition of a cohomology group H^k(X) may have subspaces of different weights, i.e. as a direct sum of Hodge structures :H^k(X) = \bigoplus_i (H_i, F_i^\bullet) where each of the Hodge structures have weight k_i. One of the early hints that such structures should exist comes from the long exact sequence of a pair of smooth projective varieties Y \subset X . The cohomology groups H^i_c(U) (for U = X - Y ) should have differing weights coming from both H^i(X) and H^(Y) . Motivation Originally, Hodge structures were introduced as a tool for keeping track of abstract Hodge decompositions on the cohomology groups of smooth projective algebraic varieties. These structures gave geometers new tools for s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |