HOME
*





Key Encapsulation
In cryptographic protocols, a key encapsulation mechanism (KEM) is used to secure symmetric key material for transmission using asymmetric (public-key) algorithms. It is commonly used in hybrid cryptosystems. In practice, public key systems are clumsy to use in transmitting long messages. Instead they are often used to exchange symmetric keys, which are relatively short. The symmetric key is then used to encrypt the longer message. The traditional approach to sending a symmetric key with public key systems is to first generate a random symmetric key and then encrypt it using the chosen public key algorithm. The recipient then decrypts the public key message to recover the symmetric key. As the symmetric key is generally short, padding is required for full security and proofs of security for padding schemes are often less than complete.
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cryptographic Protocol
A security protocol (cryptographic protocol or encryption protocol) is an abstract or concrete protocol that performs a security-related function and applies cryptographic methods, often as sequences of cryptographic primitives. A protocol describes how the algorithms should be used and includes details about data structures and representations, at which point it can be used to implement multiple, interoperable versions of a program. Cryptographic protocols are widely used for secure application-level data transport. A cryptographic protocol usually incorporates at least some of these aspects: * Key agreement or establishment * Entity authentication * Symmetric encryption and message authentication material construction * Secured application-level data transport * Non-repudiation methods * Secret sharing methods * Secure multi-party computation For example, Transport Layer Security (TLS) is a cryptographic protocol that is used to secure web (HTTPS) connections. It has an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Symmetric Cryptography
Symmetric-key algorithms are algorithms for cryptography that use the same cryptographic keys for both the encryption of plaintext and the decryption of ciphertext. The keys may be identical, or there may be a simple transformation to go between the two keys. The keys, in practice, represent a shared secret between two or more parties that can be used to maintain a private information link. The requirement that both parties have access to the secret key is one of the main drawbacks of symmetric-key encryption, in comparison to public-key encryption (also known as asymmetric-key encryption). However, symmetric-key encryption algorithms are usually better for bulk encryption. They have a smaller key size, which means less storage space and faster transmission. Due to this, asymmetric-key encryption is often used to exchange the secret key for symmetric-key encryption. Types Symmetric-key encryption can use either stream ciphers or block ciphers. * Stream ciphers encrypt the digi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Asymmetric Cryptography
Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions. Security of public-key cryptography depends on keeping the private key secret; the public key can be openly distributed without compromising security. In a public-key encryption system, anyone with a public key can encrypt a message, yielding a ciphertext, but only those who know the corresponding private key can decrypt the ciphertext to obtain the original message. For example, a journalist can publish the public key of an encryption key pair on a web site so that sources can send secret messages to the news organization in ciphertext. Only the journalist who knows the corresponding private key can decrypt the ciphertexts to obtain the sources' messages—an eavesdrop ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hybrid Cryptosystem
In cryptography, a hybrid cryptosystem is one which combines the convenience of a public-key cryptosystem with the efficiency of a symmetric-key cryptosystem. Public-key cryptosystems are convenient in that they do not require the sender and receiver to share a common secret in order to communicate securely. However, they often rely on complicated mathematical computations and are thus generally much more inefficient than comparable symmetric-key cryptosystems. In many applications, the high cost of encrypting long messages in a public-key cryptosystem can be prohibitive. This is addressed by hybrid systems by using a combination of both. A hybrid cryptosystem can be constructed using any two separate cryptosystems: * a key encapsulation mechanism, which is a public-key cryptosystem, and * a data encapsulation scheme, which is a symmetric-key cryptosystem. The hybrid cryptosystem is itself a public-key system, whose public and private keys are the same as in the key encapsulatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Finite Group
Finite is the opposite of infinite. It may refer to: * Finite number (other) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marked for person and/or tense or aspect * "Finite", a song by Sara Groves from the album '' Invisible Empires'' See also * * Nonfinite (other) {{disambiguation fr:Fini it:Finito ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

RSA (algorithm)
RSA (Rivest–Shamir–Adleman) is a public-key cryptosystem that is widely used for secure data transmission. It is also one of the oldest. The acronym "RSA" comes from the surnames of Ron Rivest, Adi Shamir and Leonard Adleman, who publicly described the algorithm in 1977. An equivalent system was developed secretly in 1973 at Government Communications Headquarters (GCHQ) (the British signals intelligence agency) by the English mathematician Clifford Cocks. That system was declassified in 1997. In a public-key cryptosystem, the encryption key is public and distinct from the decryption key, which is kept secret (private). An RSA user creates and publishes a public key based on two large prime numbers, along with an auxiliary value. The prime numbers are kept secret. Messages can be encrypted by anyone, via the public key, but can only be decoded by someone who knows the prime numbers. The security of RSA relies on the practical difficulty of factoring the product of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alice And Bob
Alice and Bob are fictional characters commonly used as placeholders in discussions about cryptographic systems and protocols, and in other science and engineering literature where there are several participants in a thought experiment. The Alice and Bob characters were invented by Ron Rivest, Adi Shamir, and Leonard Adleman in their 1978 paper "A Method for Obtaining Digital Signatures and Public-key Cryptosystems". Subsequently, they have become common archetypes in many scientific and engineering fields, such as quantum cryptography, game theory and physics. As the use of Alice and Bob became more widespread, additional characters were added, sometimes each with a particular meaning. These characters do not have to refer to people; they refer to generic agents which might be different computers or even different programs running on a single computer. Overview Alice and Bob are the names of fictional characters used for convenience and to aid comprehension. For exampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Key Derivation Function
In cryptography, a key derivation function (KDF) is a cryptographic algorithm that derives one or more secret keys from a secret value such as a master key, a password, or a passphrase using a pseudorandom function (which typically uses a cryptographic hash function or block cipher). KDFs can be used to stretch keys into longer keys or to obtain keys of a required format, such as converting a group element that is the result of a Diffie–Hellman key exchange into a symmetric key for use with AES. Keyed cryptographic hash functions are popular examples of pseudorandom functions used for key derivation. History The first deliberately slow (key stretching) password-based key derivation function was called " crypt" (or "crypt(3)" after its man page), and was invented by Robert Morris in 1978. It would encrypt a constant (zero), using the first 8 characters of the user's password as the key, by performing 25 iterations of a modified DES encryption algorithm (in which a 12-bi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cryptographic Hash
A cryptographic hash function (CHF) is a hash algorithm (a map of an arbitrary binary string to a binary string with fixed size of n bits) that has special properties desirable for cryptography: * the probability of a particular n-bit output result ( hash value) for a random input string ("message") is 2^ (like for any good hash), so the hash value can be used as a representative of the message; * finding an input string that matches a given hash value (a ''pre-image'') is unfeasible, unless the value is selected from a known pre-calculated dictionary ("rainbow table"). The ''resistance'' to such search is quantified as security strength, a cryptographic hash with n bits of hash value is expected to have a ''preimage resistance'' strength of n bits. A ''second preimage'' resistance strength, with the same expectations, refers to a similar problem of finding a second message that matches the given hash value when one message is already known; * finding any pair of different mes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chinese Remainder Theorem
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer ''n'' by several integers, then one can determine uniquely the remainder of the division of ''n'' by the product of these integers, under the condition that the divisors are pairwise coprime (no two divisors share a common factor other than 1). For example, if we know that the remainder of ''n'' divided by 3 is 2, the remainder of ''n'' divided by 5 is 3, and the remainder of ''n'' divided by 7 is 2, then without knowing the value of ''n'', we can determine that the remainder of ''n'' divided by 105 (the product of 3, 5, and 7) is 23. Importantly, this tells us that if ''n'' is a natural number less than 105, then 23 is the only possible value of ''n''. The earliest known statement of the theorem is by the Chinese mathematician Sun-tzu in the '' Sun-tzu Suan-ching'' in the 3rd century CE. The Chinese remainder theorem is widely used for computing with l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]