K-means
   HOME



picture info

K-means
''k''-means clustering is a method of vector quantization, originally from signal processing, that aims to partition of a set, partition ''n'' observations into ''k'' clusters in which each observation belongs to the cluster (statistics), cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster. This results in a partitioning of the data space into Voronoi cells. ''k''-means clustering minimizes within-cluster variances (squared Euclidean distances), but not regular Euclidean distances, which would be the more difficult Weber problem: the mean optimizes squared errors, whereas only the geometric median minimizes Euclidean distances. For instance, better Euclidean solutions can be found using k-medians clustering, ''k''-medians and k-medoids, ''k''-medoids. The problem is computationally difficult (NP-hardness, NP-hard); however, efficient heuristic algorithms converge quickly to a local optimum. These are usually similar to the ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cluster (statistics)
Cluster analysis or clustering is the data analyzing technique in which task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more Similarity measure, similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters). It is a main task of exploratory data analysis, and a common technique for statistics, statistical data analysis, used in many fields, including pattern recognition, image analysis, information retrieval, bioinformatics, data compression, computer graphics and machine learning. Cluster analysis refers to a family of algorithms and tasks rather than one specific algorithm. It can be achieved by various algorithms that differ significantly in their understanding of what constitutes a cluster and how to efficiently find them. Popular notions of clusters include groups with small Distance function, distances between cluster members, dense areas of the data space, intervals or pa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

K-means Convergence
''k''-means clustering is a method of vector quantization, originally from signal processing, that aims to partition ''n'' observations into ''k'' clusters in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster. This results in a partitioning of the data space into Voronoi cells. ''k''-means clustering minimizes within-cluster variances ( squared Euclidean distances), but not regular Euclidean distances, which would be the more difficult Weber problem: the mean optimizes squared errors, whereas only the geometric median minimizes Euclidean distances. For instance, better Euclidean solutions can be found using ''k''-medians and ''k''-medoids. The problem is computationally difficult (NP-hard); however, efficient heuristic algorithms converge quickly to a local optimum. These are usually similar to the expectation–maximization algorithm for mixtures of Gaussian distributions vi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




K-medians Clustering
K-medians clustering is a partitioning technique used in cluster analysis. It groups data into ''k'' clusters by minimizing the sum of distances—typically using the Manhattan (L1) distance—between data points and the median of their assigned clusters. This method is especially robust to outliers and is well-suited for discrete or categorical data. It is a generalization of the geometric median or 1-median algorithm, defined for a single cluster. ''k''-medians is a variation of ''k''-means clustering where instead of calculating the mean for each cluster to determine its centroid, one instead calculates the median. This has the effect of minimizing error over all clusters with respect to the 2- norm distance metric, as opposed to the squared 2-norm distance metric (which ''k''-means does). This relates directly to the ''k''-median problem which is the problem of finding ''k'' centers such that the clusters formed by them are the most compact with respect to the 2-norm. Formally ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

K-medoids
-medoids is a classical partitioning technique of clustering that splits the data set of objects into clusters, where the number of clusters assumed known ''a priori'' (which implies that the programmer must specify k before the execution of a -medoids algorithm). The "goodness" of the given value of can be assessed with methods such as the silhouette method. The name of the clustering method was coined by Leonard Kaufman and Peter J. Rousseeuw with their PAM (Partitioning Around Medoids) algorithm. The medoid of a cluster is defined as the object in the cluster whose sum (and, equivalently, the average) of dissimilarities to all the objects in the cluster is minimal, that is, it is a most centrally located point in the cluster. Unlike certain objects used by other algorithms, the medoid is an actual point in the cluster. Algorithms In general, the -medoids problem is NP-hard to solve exactly. As such, multiple heuristics to optimize this problem exist. Partitioning Arou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vector Quantization
Vector quantization (VQ) is a classical quantization technique from signal processing that allows the modeling of probability density functions by the distribution of prototype vectors. Developed in the early 1980s by Robert M. Gray, it was originally used for data compression. It works by dividing a large set of points (vectors) into groups having approximately the same number of points closest to them. Each group is represented by its centroid point, as in k-means and some other clustering algorithms. In simpler terms, vector quantization chooses a set of points to represent a larger set of points. The density matching property of vector quantization is powerful, especially for identifying the density of large and high-dimensional data. Since data points are represented by the index of their closest centroid, commonly occurring data have low error, and rare data high error. This is why VQ is suitable for lossy data compression. It can also be used for lossy data correction ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Expectation–maximization Algorithm
In statistics, an expectation–maximization (EM) algorithm is an iterative method to find (local) maximum likelihood or maximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. The EM iteration alternates between performing an expectation (E) step, which creates a function for the expectation of the log-likelihood evaluated using the current estimate for the parameters, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the ''E'' step. These parameter-estimates are then used to determine the distribution of the latent variables in the next E step. It can be used, for example, to estimate a mixture of gaussians, or to solve the multiple linear regression problem. History The EM algorithm was explained and given its name in a classic 1977 paper by Arthur Dempster, Nan Laird, and Donald Rubin. They pointed out that the method had been "proposed man ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE