K-factor (graph Theory)
In graph theory, a factor of a graph (discrete mathematics), graph ''G'' is a spanning subgraph, i.e., a subgraph that has the same vertex set as ''G''. A ''k''-factor of a graph is a spanning ''k''-Regular graph, regular subgraph, and a ''k''-factorization partitions the edges of the graph into disjoint ''k''-factors. A graph ''G'' is said to be ''k''-factorable if it admits a ''k''-factorization. In particular, a 1-factor is a perfect matching, and a 1-factorization of a ''k''-regular graph is a edge coloring, proper edge coloring with ''k'' colors. A 2-factor is a collection of disjoint cycle (graph theory), cycles that spans all vertices of the graph. 1-factorization If a graph is 1-factorable then it has to be a regular graph. However, not all regular graphs are 1-factorable. A ''k''-regular graph is 1-factorable if it has chromatic index ''k''; examples of such graphs include: * Any regular bipartite graph. Hall's marriage theorem can be used to show that a ''k''-regular ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Desargues Graph 3color Edge
Girard Desargues (; 21 February 1591September 1661) was a French mathematician and engineer, who is considered one of the founders of projective geometry. Desargues' theorem, the Desargues graph, and the crater Desargues (crater), Desargues on the Moon are named in his honour. Biography Born in Lyon, Desargues came from a family devoted to service to the French crown. His father was a royal civil law notary, notary, an investigating commissioner of the Seneschal, Seneschal's court in Lyon (1574), the collector of the tithes on ecclesiastical revenues for the city of Lyon (1583) and for the diocese of Lyon. Girard Desargues worked as an architecture, architect from 1645. Prior to that, he had worked as a tutor and may have served as an engineer and technical consultant in the entourage of Cardinal Richelieu, Richelieu. Yet his involvement in the Siege of La Rochelle, though alleged by Ch. Weiss in ''Biographie Universelle'' (1842), has never been testified. As an architect, Des ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complete Bipartite Graph
In the mathematical field of graph theory, a complete bipartite graph or biclique is a special kind of bipartite graph where every vertex of the first set is connected to every vertex of the second set..Electronic edition page 17. Graph theory itself is typically dated as beginning with Leonhard Euler's 1736 work on the Seven Bridges of Königsberg. However, drawings of complete bipartite graphs were already printed as early as 1669, in connection with an edition of the works of Ramon Llull edited by Athanasius Kircher. Llull himself had made similar drawings of complete graphs three centuries earlier.. Definition A complete bipartite graph is a graph whose vertices can be partitioned into two subsets and such that no edge has both endpoints in the same subset, and every possible edge that could connect vertices in different subsets is part of the graph. That is, it is a bipartite graph such that for every two vertices and, is an edge in . A complete bipartite graph w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorization, factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow primality test, method of checking the primality of a given number , called trial division, tests whether is a multiple of any integer between 2 and . Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Springer US
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second-largest academic publisher with 65 staff in 1872.Chronology ". Springer Science+Business Media. In 1964, Springer expanded its business internationally, op ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Anton Kotzig
Anton Kotzig (22 October 1919 – 20 April 1991) was a Slovak–Canadian mathematician, expert in statistics, combinatorics and graph theory. A number of his mathematical contributions are named after him. These include the Ringel–Kotzig conjecture on graceful labeling of trees (with Gerhard Ringel); Kotzig's conjecture on regularly path connected graphs; Kotzig's theorem on the degrees of vertices in convex polyhedra; as well as the Kotzig transformation. Biography Kotzig was born in Kočovce, a village in Western Slovakia. He studied at the secondary grammar school in Nové Mesto nad Váhom, and began his undergraduate studies at the Charles University in Prague. After the closure of Czech universities in 1939, he moved to Bratislava where in 1943, he earned a doctoral degree (RNDr.) in Mathematical Statistics from the Comenius University. He remained in Bratislava working at the Central Bureau of Social Insurance for Slovakia as head of the Department of Mathemat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hamiltonian Cycle
In the mathematics, mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path (graph theory), path in an undirected or directed graph that visits each vertex (graph theory), vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle (graph theory), cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path. The computational problems of determining whether such paths and cycles exist in graphs are NP-complete; see Hamiltonian path problem for details. Hamiltonian paths and cycles are named after William Rowan Hamilton, who invented the icosian game, now also known as ''Hamilton's puzzle'', which involves finding a Hamiltonian cycle in the edge graph of the dodecahedron. Hamilton solved this problem using the icosian calculus, an algebraic structur ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Glossary Of Graph Theory
This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges. Symbols A B C D E F G H I J K L M ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Overfull Conjecture
In graph theory, an overfull graph is a graph whose size is greater than the product of its maximum degree and half of its order floored, i.e. , E, > \Delta (G) \lfloor , V, /2 \rfloor where , E, is the size of ''G'', \displaystyle\Delta(G) is the maximum degree of ''G'', and , V, is the order of ''G''. The concept of an overfull subgraph, an overfull graph that is a subgraph, immediately follows. An alternate, stricter definition of an overfull subgraph ''S'' of a graph ''G'' requires \displaystyle\Delta (G) = \Delta (S). Examples Every odd cycle graph of length three or more is overfull. The product of its degree (two) and half its length (rounded down) is one less than the number of edges in the cycle. More generally, every regular graph with an odd number n of vertices is overfull, because its number of edges, \Delta n/2 (where \Delta is its degree), is larger than \Delta\lfloor n/2\rfloor. Properties A few properties of overfull graphs: # Overfull graphs are of odd orde ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conjecture
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis or Fermat's conjecture (now a theorem, proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to prove them. Resolution of conjectures Proof Formal mathematics is based on ''provable'' truth. In mathematics, any number of cases supporting a universally quantified conjecture, no matter how large, is insufficient for establishing the conjecture's veracity, since a single counterexample could immediately bring down the conjecture. Mathematical journals sometimes publish the minor results of research teams having extended the search for a counterexample farther than previously done. For instance, the Collatz conjecture, which concerns whether or not certain sequences of integers terminate, has been tested for all integers up to 1.2 × 101 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Regular Polygon
In Euclidean geometry, a regular polygon is a polygon that is Equiangular polygon, direct equiangular (all angles are equal in measure) and Equilateral polygon, equilateral (all sides have the same length). Regular polygons may be either ''convex polygon, convex'' or ''star polygon, star''. In the limit (mathematics), limit, a sequence of regular polygons with an increasing number of sides approximates a circle, if the perimeter or area is fixed, or a regular apeirogon (effectively a Line (geometry), straight line), if the edge length is fixed. General properties These properties apply to all regular polygons, whether convex or star polygon, star: *A regular ''n''-sided polygon has rotational symmetry of order ''n''. *All vertices of a regular polygon lie on a common circle (the circumscribed circle); i.e., they are concyclic points. That is, a regular polygon is a cyclic polygon. *Together with the property of equal-length sides, this implies that every regular polygon also h ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |