Internal And External Angle
   HOME
*





Internal And External Angle
In geometry, an angle of a polygon is formed by two sides of the polygon that share an endpoint. For a Simple polygon, simple (non-self-intersecting) polygon, regardless of whether it is Polygon#Convexity and non-convexity, convex or non-convex, this angle is called an Interior (topology), interior angle (or ) if a point within the angle is in the interior of the polygon. A polygon has exactly one internal angle per vertex (geometry), vertex. If every internal angle of a simple polygon is less than pi, π radians (180°), then the polygon is called convex polygon, convex. In contrast, an Interior (topology), exterior angle (also called an or turning angle) is an angle formed by one side of a simple polygon and a Extended side, line extended from an adjacent side.Weisstein, Eric W. "Exterior Angle Bisector." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/ExteriorAngleBisector.htmlPosamentier, Alfred S., and Lehmann, Ingmar. ''The Secrets of Triangles'', P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Induction
Mathematical induction is a method for proving that a statement ''P''(''n'') is true for every natural number ''n'', that is, that the infinitely many cases ''P''(0), ''P''(1), ''P''(2), ''P''(3), ...  all hold. Informal metaphors help to explain this technique, such as falling dominoes or climbing a ladder: A proof by induction consists of two cases. The first, the base case, proves the statement for ''n'' = 0 without assuming any knowledge of other cases. The second case, the induction step, proves that ''if'' the statement holds for any given case ''n'' = ''k'', ''then'' it must also hold for the next case ''n'' = ''k'' + 1. These two steps establish that the statement holds for every natural number ''n''. The base case does not necessarily begin with ''n'' = 0, but often with ''n'' = 1, and possibly with any fixed natural number ''n'' = ''N'', establishing the truth of the statement for all natu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euclidean Plane Geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated earlier,. Euclid was the first to organize these propositions into a logical system in which each result is '' proved'' from axioms and previously proved theorems. The ''Elements'' begins with plane geometry, still taught in secondary school (high school) as the first axiomatic system and the first examples of mathematical proofs. It goes on to the solid geometry of three dimensions. Much of the ''Elements'' states results of what are now called algebra and number theory, explained in geometrical language. For more than two thousand years, the adjective "Euclidean" was unnecessary because no other sort of geomet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Angle
In Euclidean geometry, an angle is the figure formed by two Ray (geometry), rays, called the ''Side (plane geometry), sides'' of the angle, sharing a common endpoint, called the ''vertex (geometry), vertex'' of the angle. Angles formed by two rays lie in the plane (geometry), plane that contains the rays. Angles are also formed by the intersection of two planes. These are called dihedral angles. Two intersecting curves may also define an angle, which is the angle of the rays lying tangent to the respective curves at their point of intersection. ''Angle'' is also used to designate the measurement, measure of an angle or of a Rotation (mathematics), rotation. This measure is the ratio of the length of a arc (geometry), circular arc to its radius. In the case of a geometric angle, the arc is centered at the vertex and delimited by the sides. In the case of a rotation, the arc is centered at the center of the rotation and delimited by any other point and its image by the rotation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Concave Polygon
A simple polygon that is not convex is called concave, non-convex or reentrant. A concave polygon will always have at least one reflex interior angle—that is, an angle with a measure that is between 180 degrees and 360 degrees exclusive. Polygon Some lines containing interior points of a concave polygon intersect its boundary at more than two points. Some diagonals of a concave polygon lie partly or wholly outside the polygon. Some sidelines of a concave polygon fail to divide the plane into two half-planes one of which entirely contains the polygon. None of these three statements holds for a convex polygon. As with any simple polygon, the sum of the internal angles of a concave polygon is ×(''n'' − 2) radians, equivalently 180×(''n'' − 2) degrees (°), where ''n'' is the number of sides. It is always possible to partition a concave polygon into a set of convex polygons. A polynomial-time algorithm for finding a decomposition into as few convex polyg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Perimeter Of The Polygon
A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference. Calculating the perimeter has several practical applications. A calculated perimeter is the length of fence required to surround a yard or garden. The perimeter of a wheel/circle (its circumference) describes how far it will roll in one revolution. Similarly, the amount of string wound around a spool is related to the spool's perimeter; if the length of the string was exact, it would equal the perimeter. Formulas The perimeter is the distance around a shape. Perimeters for more general shapes can be calculated, as any path, with \int_0^L \mathrms, where L is the length of the path and ds is an infinitesimal line element. Both of these must be replaced by algebraic forms in order to be practically calculated. If the perimeter is given as a closed piecewise smooth plane curve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Directed Angles
Director may refer to: Literature * ''Director'' (magazine), a British magazine * ''The Director'' (novel), a 1971 novel by Henry Denker * ''The Director'' (play), a 2000 play by Nancy Hasty Music * Director (band), an Irish rock band * ''Director'' (Avant album) (2006) * ''Director'' (Yonatan Gat album) Occupations and positions Arts and design * Animation director * Artistic director * Creative director * Design director * Film director * Music director * Music video director * Sports director * Television director * Theatre director Positions in other fields * Director (business), a senior level management position * Director (colonial), head of chartered company's colonial administration in a territory * Director (education), head of a university or other educational body * Company director * Cruise director * Executive director * Finance director or chief financial officer * Funeral director * Managing director * Non-executive director * Technical director * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Star Polygon
In geometry, a star polygon is a type of non-convex polygon. Regular star polygons have been studied in depth; while star polygons in general appear not to have been formally defined, certain notable ones can arise through truncation operations on regular simple and star polygons. Branko Grünbaum identified two primary definitions used by Johannes Kepler, one being the regular star polygons with intersecting edges that don't generate new vertices, and the second being simple isotoxal concave polygons. The first usage is included in polygrams which includes polygons like the pentagram but also compound figures like the hexagram. One definition of a ''star polygon'', used in turtle graphics, is a polygon having 2 or more turns (turning number and density), like in spirolaterals.Abelson, Harold, diSessa, Andera, 1980, ''Turtle Geometry'', MIT Press, p.24 Etymology Star polygon names combine a numeral prefix, such as ''penta-'', with the Greek suffix '' -gram'' (in this cas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Crossed Polygon
A crossed polygon is a polygon in the plane with a turning number or density of zero, with the appearance of a figure 8, infinity symbol, or lemniscate curve. ''Crossed polygons'' are related to star polygons which have turning numbers greater than 1. The vertices with clockwise turning angles equal the vertices with counterclockwise turning angles. A ''crossed polygon'' will always have at least 2 edges or vertices intersecting or coinciding. Any convex polygon with 4 or more sides can be remade into a crossed polygon by swapping the positions of two adjacent vertices. ''Crossed polygons'' are common as vertex figures of uniform star polyhedra. Coxeter, H.S.M., M. S. Longuet-Higgins and J.C.P Miller, Uniform Polyhedra, ''Phil. Trans.'' 246 A (1954) pp. 401–450. Crossed quadrilateral Crossed quadrilaterals are most common, including: *''crossed parallelogram'' or antiparallelogram, a crossed quadrilateral with alternate edges of equal length. *''crossed trapezoid has ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertical Angles
In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the ''vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles are also formed by the intersection of two planes. These are called dihedral angles. Two intersecting curves may also define an angle, which is the angle of the rays lying tangent to the respective curves at their point of intersection. ''Angle'' is also used to designate the measure of an angle or of a rotation. This measure is the ratio of the length of a circular arc to its radius. In the case of a geometric angle, the arc is centered at the vertex and delimited by the sides. In the case of a rotation, the arc is centered at the center of the rotation and delimited by any other point and its image by the rotation. History and etymology The word ''angle'' comes from the Latin word ''angulus'', meaning "corner"; cognate words are the Gr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


The Secrets Of Triangles
''The Secrets of Triangles: A Mathematical Journey'' is a popular mathematics book on the geometry of triangles. It was written by Alfred S. Posamentier and , and published in 2012 by Prometheus Books. Topics The book consists of ten chapters, with the first six concentrating on triangle centers while the final four cover more diverse topics including the area of triangles, inequalities involving triangles, straightedge and compass constructions, and fractals. Beyond the classical triangle centers (the circumcenter, incenter, orthocenter, and centroid) the book covers other centers including the Brocard points, Fermat point, Gergonne point, and other geometric objects associated with triangle centers such as the Euler line, Simson line, and nine-point circle. The chapter on areas includes both trigonometric formulas and Heron's formula for computing the area of a triangle from its side lengths, and the chapter on inequalities includes the Erdős–Mordell inequality on sums of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geometries ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]