HOME
*





Information Causality
Information causality is a physical principle suggested in 2009. Information Causality states that information gain that a receiver (Bob) can reach about data, previously unknown to him, from a sender (Alice), by using all his local resources and n classical bits communicated by the sender, is at most n bits. The principle assumes classical communication: if quantum bits were allowed to be transmitted the information gain could be higher as demonstrated in the quantum superdense coding protocol his is debatable as superdense coding requires sending as many qubits - including auxiliary channels - as there are classical bits to transfer The principle is respected by all correlations accessible with quantum physics, while it excludes all correlations which violate the quantum Tsirelson bound for the CHSH inequality. However, it does not exclude beyond-quantum correlations in multipartite situations. See also * Tsirelson's bound * Quantum nonlocality In theoretical physics, quan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Physical Law
Scientific laws or laws of science are statements, based on repeated experiments or observations, that describe or predict a range of natural phenomena. The term ''law'' has diverse usage in many cases (approximate, accurate, broad, or narrow) across all fields of natural science (physics, chemistry, astronomy, geoscience, biology). Laws are developed from data and can be further developed through mathematics; in all cases they are directly or indirectly based on empirical evidence. It is generally understood that they implicitly reflect, though they do not explicitly assert, causal relationships fundamental to reality, and are discovered rather than invented. Scientific laws summarize the results of experiments or observations, usually within a certain range of application. In general, the accuracy of a law does not change when a new theory of the relevant phenomenon is worked out, but rather the scope of the law's application, since the mathematics or statement representing the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Superdense Coding
In quantum information theory, superdense coding (also referred to as ''dense coding'') is a quantum communication protocol to communicate a number of classical bits of information by only transmitting a smaller number of qubits, under the assumption of sender and receiver pre-sharing an entangled resource. In its simplest form, the protocol involves two parties, often referred to as Alice and Bob in this context, which share a pair of maximally entangled qubits, and allows Alice to transmit two bits (''i.e.'', one of 00, 01, 10 or 11) to Bob by sending only one qubit. This protocol was first proposed by Charles H. Bennett and Stephen Wiesner in 1970Stephen Wiesner
Memorial blog post by Or Sattath, with scan of Bennett's handwritten notes from 1970. See als

[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tsirelson's Bound
A Tsirelson bound is an upper limit to quantum mechanical correlations between distant events. Given that quantum mechanics violates Bell inequalities (i.e., it cannot be described by a local hidden-variable theory), a natural question to ask is how large can the violation be. The answer is precisely the Tsirelson bound for the particular Bell inequality in question. In general, this bound is lower than the bound that would be obtained if more general theories, only constrained by "no-signalling" (i.e., that they do not permit communication faster than light), were considered, and much research has been dedicated to the question of why this is the case. The Tsirelson bounds are named after Boris S. Tsirelson (or Cirel'son, in a different transliteration), the author of the article in which the first one was derived. Bound for the CHSH inequality The first Tsirelson bound was derived as an upper bound on the correlations measured in the CHSH inequality. It states that if we have ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tsirelson's Bound
A Tsirelson bound is an upper limit to quantum mechanical correlations between distant events. Given that quantum mechanics violates Bell inequalities (i.e., it cannot be described by a local hidden-variable theory), a natural question to ask is how large can the violation be. The answer is precisely the Tsirelson bound for the particular Bell inequality in question. In general, this bound is lower than the bound that would be obtained if more general theories, only constrained by "no-signalling" (i.e., that they do not permit communication faster than light), were considered, and much research has been dedicated to the question of why this is the case. The Tsirelson bounds are named after Boris S. Tsirelson (or Cirel'son, in a different transliteration), the author of the article in which the first one was derived. Bound for the CHSH inequality The first Tsirelson bound was derived as an upper bound on the correlations measured in the CHSH inequality. It states that if we have ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Nonlocality
In theoretical physics, quantum nonlocality refers to the phenomenon by which the measurement statistics of a multipartite quantum system do not admit an interpretation in terms of a local realistic theory. Quantum nonlocality has been experimentally verified under different physical assumptions. Any physical theory that aims at superseding or replacing quantum theory should account for such experiments and therefore cannot fulfill local realism; quantum nonlocality is a property of the universe that is independent of our description of nature. Quantum nonlocality does not allow for faster-than-light communication, and hence is compatible with special relativity and its universal speed limit of objects. Thus, quantum theory is local in the strict sense defined by special relativity and, as such, the term "quantum nonlocality" is sometimes considered a misnomer. Still, it prompts many of the foundational discussions concerning quantum theory. History Einstein, Podolsky and Rose ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]