Independent Equation
An independent equation is an equation in a system of simultaneous equations which cannot be derived algebraically from the other equations. The concept typically arises in the context of linear equations. If it is possible to duplicate one of the equations in a system by multiplying each of the other equations by some number (potentially a different number for each equation) and summing the resulting equations, then that equation is dependent on the others. But if this is not possible, then that equation is independent of the others. If an equation is independent of the other equations in its system, then it provides information beyond that which is provided by the other equations. In contrast, if an equation is dependent on the others, then it provides no information not contained in the others collectively, and the equation can be dropped from the system without any information loss. The number of independent equations in a system equals the rank of the augmented matrix o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Three Intersecting Lines
3 is a number, numeral, and glyph. 3, three, or III may also refer to: * AD 3, the third year of the AD era * 3 BC, the third year before the AD era * March, the third month Books * ''Three of Them'' (Russian: ', literally, "three"), a 1901 novel by Maksim Gorky * ''Three'', a 1946 novel by William Sansom * ''Three'', a 1970 novel by Sylvia Ashton-Warner * ''Three'' (novel), a 2003 suspense novel by Ted Dekker * ''Three'' (comics), a graphic novel by Kieron Gillen. * ''3'', a 2004 novel by Julie Hilden * ''Three'', a collection of three plays by Lillian Hellman * ''Three By Flannery O'Connor'', collection Flannery O'Connor bibliography Brands * 3 (telecommunications), a global telecommunications brand ** 3Arena, indoor amphitheatre in Ireland operating with the "3" brand ** 3 Hong Kong, telecommunications company operating in Hong Kong ** Three Australia, Australian telecommunications company ** Three Ireland, Irish telecommunications company ** Three UK, British telecom ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Parallel Lines
In geometry, parallel lines are coplanar straight lines that do not intersect at any point. Parallel planes are planes in the same three-dimensional space that never meet. ''Parallel curves'' are curves that do not touch each other or intersect and keep a fixed minimum distance. In three-dimensional Euclidean space, a line and a plane that do not share a point are also said to be parallel. However, two noncoplanar lines are called ''skew lines''. Parallel lines are the subject of Euclid's parallel postulate. Parallelism is primarily a property of affine geometries and Euclidean geometry is a special instance of this type of geometry. In some other geometries, such as hyperbolic geometry, lines can have analogous properties that are referred to as parallelism. Symbol The parallel symbol is \parallel. For example, AB \parallel CD indicates that line ''AB'' is parallel to line ''CD''. In the Unicode character set, the "parallel" and "not parallel" signs have codepoint ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Equation
In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign . The word ''equation'' and its cognates in other languages may have subtly different meanings; for example, in French an ''équation'' is defined as containing one or more variables, while in English, any well-formed formula consisting of two expressions related with an equals sign is an equation. ''Solving'' an equation containing variables consists of determining which values of the variables make the equality true. The variables for which the equation has to be solved are also called unknowns, and the values of the unknowns that satisfy the equality are called solutions of the equation. There are two kinds of equations: identities and conditional equations. An identity is true for all values of the variables. A conditional equation is only true for particular values of the variables. An equation is written as two expressions, connected by a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
System Of Linear Equations
In mathematics, a system of linear equations (or linear system) is a collection of one or more linear equations involving the same variable (math), variables. For example, :\begin 3x+2y-z=1\\ 2x-2y+4z=-2\\ -x+\fracy-z=0 \end is a system of three equations in the three variables . A solution to a linear system is an assignment of values to the variables such that all the equations are simultaneously satisfied. A Equation solving, solution to the system above is given by the Tuple, ordered triple :(x,y,z)=(1,-2,-2), since it makes all three equations valid. The word "system" indicates that the equations are to be considered collectively, rather than individually. In mathematics, the theory of linear systems is the basis and a fundamental part of linear algebra, a subject which is used in most parts of modern mathematics. Computational algorithms for finding the solutions are an important part of numerical linear algebra, and play a prominent role in engineering, physics, chemistry, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Equation
In mathematics, a linear equation is an equation that may be put in the form a_1x_1+\ldots+a_nx_n+b=0, where x_1,\ldots,x_n are the variables (or unknowns), and b,a_1,\ldots,a_n are the coefficients, which are often real numbers. The coefficients may be considered as parameters of the equation, and may be arbitrary expressions, provided they do not contain any of the variables. To yield a meaningful equation, the coefficients a_1, \ldots, a_n are required to not all be zero. Alternatively, a linear equation can be obtained by equating to zero a linear polynomial over some field, from which the coefficients are taken. The solutions of such an equation are the values that, when substituted for the unknowns, make the equality true. In the case of just one variable, there is exactly one solution (provided that a_1\ne 0). Often, the term ''linear equation'' refers implicitly to this particular case, in which the variable is sensibly called the ''unknown''. In the case of two vari ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
3 Equations -1
3 (three) is a number, numeral and digit. It is the natural number following 2 and preceding 4, and is the smallest odd prime number and the only prime preceding a square number. It has religious or cultural significance in many societies. Evolution of the Arabic digit The use of three lines to denote the number 3 occurred in many writing systems, including some (like Roman and Chinese numerals) that are still in use. That was also the original representation of 3 in the Brahmic (Indian) numerical notation, its earliest forms aligned vertically. However, during the Gupta Empire the sign was modified by the addition of a curve on each line. The Nāgarī script rotated the lines clockwise, so they appeared horizontally, and ended each line with a short downward stroke on the right. In cursive script, the three strokes were eventually connected to form a glyph resembling a with an additional stroke at the bottom: ३. The Indian digits spread to the Caliphate in the 9th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Augmented Matrix
In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices, usually for the purpose of performing the same elementary row operations on each of the given matrices. Given the matrices and , where A = \begin 1 & 3 & 2 \\ 2 & 0 & 1 \\ 5 & 2 & 2 \end , \quad B = \begin 4 \\ 3 \\ 1 \end, the augmented matrix (''A'', ''B'') is written as (A, B) = \left begin 1 & 3 & 2 & 4 \\ 2 & 0 & 1 & 3 \\ 5 & 2 & 2 & 1 \end\right This is useful when solving systems of linear equations. For a given number of unknowns, the number of solutions to a system of linear equations depends only on the rank of the matrix representing the system and the rank of the corresponding augmented matrix. Specifically, according to the Rouché–Capelli theorem, any system of linear equations is inconsistent (has no solutions) if the rank of the augmented matrix is greater than the rank of the coefficient matrix; if, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Coefficient Matrix
In linear algebra, a coefficient matrix is a matrix consisting of the coefficients of the variables in a set of linear equations. The matrix is used in solving systems of linear equations. Coefficient matrix In general, a system with ''m'' linear equations and ''n'' unknowns can be written as : \begin a_ x_1 + a_ x_2 + \cdots + a_ x_n &= b_1 \\ a_ x_1 + a_ x_2 + \cdots + a_ x_n &= b_2 \\ &\;\; \vdots \\ a_ x_1 + a_ x_2 + \cdots + a_ x_n &= b_m \end where x_1, x_2, \ldots, x_n are the unknowns and the numbers a_, a_, \ldots, a_ are the coefficients of the system. The coefficient matrix is the ''m'' × ''n'' matrix with the coefficient a_ as the (''i'', ''j'')th entry: : \begin a_ & a_ & \cdots & a_ \\ a_ & a_ &\cdots & a_ \\ \vdots & \vdots & \ddots & \vdots \\ a_ & a_ & \cdots & a_ \end Then the above set of equations can be expressed more succinctly as : A\mathbf = \mathbf where ''A'' is the coefficient matrix and b is the column vector of constant terms. Rela ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Column Vector
In linear algebra, a column vector with m elements is an m \times 1 matrix consisting of a single column of m entries, for example, \boldsymbol = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end. Similarly, a row vector is a 1 \times n matrix for some n, consisting of a single row of n entries, \boldsymbol a = \begin a_1 & a_2 & \dots & a_n \end. (Throughout this article, boldface is used for both row and column vectors.) The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: \begin x_1 \; x_2 \; \dots \; x_m \end^ = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end and \begin x_1 \\ x_2 \\ \vdots \\ x_m \end^ = \begin x_1 \; x_2 \; \dots \; x_m \end. The set of all row vectors with ''n'' entries in a given field (such as the real numbers) forms an ''n''-dimensional vector space; similarly, the set of all column vectors with ''m'' entries forms an ''m''-dimensional vector space. The space of row vectors with ''n'' entries can b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Consistent Equations
In mathematics and particularly in algebra, a system of equations (either linear or nonlinear) is called consistent if there is at least one set of values for the unknowns that satisfies each equation in the system—that is, when substituted into each of the equations, they make each equation hold true as an identity. In contrast, a linear or non linear equation system is called inconsistent if there is no set of values for the unknowns that satisfies all of the equations. If a system of equations is inconsistent, then it is possible to manipulate and combine the equations in such a way as to obtain contradictory information, such as , or x^3 + y^5 = 5 and x^3 + y^3 = 6 (which implies ). Both types of equation system, consistent and inconsistent, can be any of overdetermined (having more equations than unknowns), underdetermined (having fewer equations than unknowns), or exactly determined. Simple examples Underdetermined and consistent The system :\begin x+y+z &= 3, \\ x ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Algebra
Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as lines, planes and rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to spaces of functions. Linear algebra is also used in most sciences and fields of engineering, because it allows modeling many natural phenomena, and computing efficiently with such models. For nonlinear systems, which cannot be modeled with linear algebra, it is often used for dealing with first-order approximations, using the fact that the differential of a multivariate function at a point is the linear ma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Indeterminate System
In mathematics, particularly in algebra, an indeterminate system is a system of simultaneous equations (e.g., linear equations) which has more than one solution (sometimes infinitely many solutions). In the case of a linear system, the system may be said to be underspecified, in which case the presence of more than one solution would imply an infinite number of solutions (since the system would be describable in terms of at least one free variable), but that property does not extend to nonlinear systems (e.g., the system with the equation x^2=1 ). An indeterminate system by definition is consistent, in the sense of having at least one solution. For a system of linear equations, the number of equations in an indeterminate system could be the same as the number of unknowns, less than the number of unknowns (an underdetermined system), or greater than the number of unknowns (an overdetermined system). Conversely, any of those three cases may or may not be indeterminate. Examples Th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |