Hypercohomology
   HOME





Hypercohomology
In homological algebra, the hyperhomology or hypercohomology (\mathbb_*(-), \mathbb^*(-)) is a generalization of (co)homology functors which takes as input not objects in an abelian category \mathcal but instead chain complexes of objects, so objects in \text(\mathcal). It is a sort of cross between the derived functor cohomology of an object and the homology of a chain complex since hypercohomology corresponds to the derived global sections functor \mathbf^*\Gamma(-). Hyperhomology is no longer used much: since about 1970 it has been largely replaced by the roughly equivalent concept of a derived functor between derived categories. Motivation One of the motivations for hypercohomology comes from the fact that there is no obvious generalization of cohomological long exact sequences associated to short exact sequences 0 \to M' \to M \to M'' \to 0 i.e. there is an associated long exact sequence 0 \to H^0(M') \to H^0(M) \to H^0(M'')\to H^1(M') \to \cdots It turns out that hyperc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Deligne Cohomology
In mathematics, Deligne cohomology sometimes called Deligne-Beilinson cohomology is the hypercohomology of the Deligne complex of a complex manifold. It was introduced by Pierre Deligne in unpublished work in about 1972 as a cohomology theory for algebraic varieties that includes both ordinary cohomology and intermediate Jacobians. For introductory accounts of Deligne cohomology see , , and . Definition The analytic Deligne complex Z(''p'')D, an on a complex analytic manifold ''X'' is0\rightarrow \mathbf Z(p)\rightarrow \Omega^0_X\rightarrow \Omega^1_X\rightarrow\cdots\rightarrow \Omega_X^ \rightarrow 0 \rightarrow \dotswhere Z(''p'') = (2π i)''p''Z. Depending on the context, \Omega^*_X is either the complex of smooth (i.e., ''C''∞) differential forms or of holomorphic forms, respectively. The Deligne cohomology is the ''q''-th hypercohomology of the Deligne complex. An alternative definition of this complex is given as the homotopy limit of the diagram\begin & & \mathbb \\ & ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Logarithmic Form
In algebraic geometry and the theory of complex manifolds, a logarithmic differential form is a differential form with poles of a certain kind. The concept was introduced by Pierre Deligne. In short, logarithmic differentials have the mildest possible singularities needed in order to give information about an open submanifold (the complement of the divisor of poles). (This idea is made precise by several versions of de Rham's theorem discussed below.) Let ''X'' be a complex manifold, ''D'' ⊂ ''X'' a reduced divisor (a sum of distinct codimension-1 complex subspaces), and ω a holomorphic ''p''-form on ''X''−''D''. If both ω and ''d''ω have a pole of order at most 1 along ''D'', then ω is said to have a logarithmic pole along ''D''. ω is also known as a logarithmic ''p''-form. The ''p''-forms with log poles along ''D'' form a subsheaf of the meromorphic ''p''-forms on ''X'', denoted :\Omega^p_X(\log D). The name comes from the fact that in complex analysis, d(\log z)=dz/z; ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Derived Categories
In mathematics, the derived category ''D''(''A'') of an abelian category ''A'' is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on ''A''. The construction proceeds on the basis that the objects of ''D''(''A'') should be chain complexes in ''A'', with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology. The definitions lead to a significant simplification of formulas otherwise described (not completely faithfully) by complicated spectral sequences. The development of the derived category, by Alexander Grothendieck and his student Jean-Louis Verdier shortly after 1960, now appears as one terminal point in the explosive development of homological algebra in the 1950s, a decade in which it had made remark ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Derived Category
In mathematics, the derived category ''D''(''A'') of an abelian category ''A'' is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on ''A''. The construction proceeds on the basis that the objects of ''D''(''A'') should be chain complexes in ''A'', with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology. The definitions lead to a significant simplification of formulas otherwise described (not completely faithfully) by complicated spectral sequences. The development of the derived category, by Alexander Grothendieck and his student Jean-Louis Verdier shortly after 1960, now appears as one terminal point in the explosive development of homological algebra in the 1950s, a decade in which it had ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homological Algebra
Homological algebra is the branch of mathematics that studies homology (mathematics), homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of module (mathematics), modules and Syzygy (mathematics), syzygies) at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert. Homological algebra is the study of homological functors and the intricate algebraic structures that they entail; its development was closely intertwined with the emergence of category theory. A central concept is that of chain complexes, which can be studied through their homology and cohomology. Homological algebra affords the means to extract information contained in these complexes and present it in the form of homological invariant (mathematics), invariants of ring (mathematics), rings, modules, topological spaces, and other "tangible ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gerbe
In mathematics, a gerbe (; ) is a construct in homological algebra and topology. Gerbes were introduced by Jean Giraud following ideas of Alexandre Grothendieck as a tool for non-commutative cohomology in degree 2. They can be seen as an analogue of fibre bundles where the fibre is the classifying stack of a group. Gerbes provide a convenient, if highly abstract, language for dealing with many types of deformation questions especially in modern algebraic geometry. In addition, special cases of gerbes have been used more recently in differential topology and differential geometry to give alternative descriptions to certain cohomology classes and additional structures attached to them. "Gerbe" is a French (and archaic English) word that literally means wheat sheaf. Definitions Gerbes on a topological space A gerbe on a topological space S is a stack \mathcal of groupoids over S that is ''locally non-empty'' (each point p \in S has an open neighbourhood U_p over which the s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simple Normal Crossing
In algebraic geometry a normal crossing singularity is a singularity similar to a union of coordinate hyperplanes. The term can be confusing because normal crossing singularities are not usually normal schemes (in the sense of the local rings being integrally closed). Normal crossing divisors Normal crossing divisors are a class of divisors which generalize the smooth divisors. Intuitively they cross only in a transversal way. Let ''A'' be an algebraic variety, and Z= \bigcup_i Z_i a reduced Cartier divisor, with Z_i its irreducible components. Then ''Z'' is called a smooth normal crossing divisor if either :(i) ''A'' is a curve, or :(ii) all Z_i are smooth, and for each component Z_k, (Z-Z_k), _ is a smooth normal crossing divisor. Equivalently, one says that a reduced divisor has normal crossings if each point étale locally looks like the intersection of coordinate hyperplanes. Normal crossing singularity A normal crossings singularity is a point in an algebraic variety ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Manifold
__notoc__ In mathematics, an algebraic manifold is an algebraic variety which is also a manifold. As such, algebraic manifolds are a generalisation of the concept of smooth curves and surfaces defined by polynomials. An example is the sphere, which can be defined as the zero set of the polynomial and hence is an algebraic variety. For an algebraic manifold, the ground field will be the real numbers or complex numbers; in the case of the real numbers, the manifold of real points is sometimes called a Nash manifold. Every sufficiently small local patch of an algebraic manifold is isomorphic to ''k''''m'' where ''k'' is the ground field. Equivalently the variety is smooth (free from singular points). The Riemann sphere is one example of a complex algebraic manifold, since it is the complex projective line. Examples *Elliptic curves *Grassmannian See also *Algebraic geometry and analytic geometry In mathematics, algebraic geometry and analytic geometry are two closely related ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Complex Manifold
In differential geometry and complex geometry, a complex manifold is a manifold with a ''complex structure'', that is an atlas (topology), atlas of chart (topology), charts to the open unit disc in the complex coordinate space \mathbb^n, such that the transition maps are Holomorphic function, holomorphic. The term "complex manifold" is variously used to mean a complex manifold in the sense above (which can be specified as an ''integrable'' complex manifold) or an almost complex manifold, ''almost'' complex manifold. Implications of complex structure Since holomorphic functions are much more rigid than smooth functions, the theories of smooth manifold, smooth and complex manifolds have very different flavors: compact space, compact complex manifolds are much closer to algebraic variety, algebraic varieties than to differentiable manifolds. For example, the Whitney embedding theorem tells us that every smooth ''n''-dimensional manifold can be Embedding, embedded as a smooth subma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic De Rham Cohomology
Algebraic may refer to any subject related to algebra in mathematics and related branches like algebraic number theory and algebraic topology. The word algebra itself has several meanings. Algebraic may also refer to: * Algebraic data type, a datatype in computer programming each of whose values is data from other datatypes wrapped in one of the constructors of the datatype * Algebraic numbers, a complex number that is a root of a non-zero polynomial in one variable with integer coefficients * Algebraic functions, functions satisfying certain polynomials * Algebraic element, an element of a field extension which is a root of some polynomial over the base field * Algebraic extension, a field extension such that every element is an algebraic element over the base field * Algebraic definition, a definition in mathematical logic which is given using only equalities between terms * Algebraic structure, a set with one or more finitary operations defined on it * Algebraic, the order of ent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hodge–de Rham Spectral Sequence
In mathematics, the Hodge–de Rham spectral sequence (named in honor of W. V. D. Hodge and Georges de Rham) is an alternative term sometimes used to describe the Frölicher spectral sequence (named after Alfred Frölicher, who actually discovered it). This spectral sequence describes the precise relationship between the Dolbeault cohomology and the de Rham cohomology of a general complex manifold. On a compact Kähler manifold, the sequence degenerates, thereby leading to the Hodge decomposition of the de Rham cohomology. Description of the spectral sequence The spectral sequence is as follows: :H^q(X, \Omega^p) \Rightarrow H^(X, \mathbf C) where ''X'' is a complex manifold, H^(X, \mathbf C) is its cohomology with complex coefficients and the left hand term, which is the E_1-page of the spectral sequence, is the cohomology with values in the sheaf of holomorphic differential forms. The existence of the spectral sequence as stated above follows from the Poincaré lemma, whic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Variety
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the solution set, set of solutions of a system of polynomial equations over the real number, real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition. Conventions regarding the definition of an algebraic variety differ slightly. For example, some definitions require an algebraic variety to be Irreducible component, irreducible, which means that it is not the Union (set theory), union of two smaller Set (mathematics), sets that are Closed set, closed in the Zariski topology. Under this definition, non-irreducible algebraic varieties are called algebraic sets. Other conventions do not require irreducibility. The fundamental theorem of algebra establishes a link between algebra and geometry by showing that a mon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]