Heiligenschein
   HOME
*



picture info

Heiligenschein
(; ) is an optical phenomenon in which a bright spot appears around the shadow of the viewer's head in the presence of dew. In photogrammetry and remote sensing, it is more commonly known as the hotspot. It is also occasionally known as Cellini's halo after the Italian artist and writer Benvenuto Cellini (15001571), who described the phenomenon in his memoirs in 1562. Nearly spherical dew droplets act as lenses to focus the light onto the surface behind them. When this light scatters or reflects off that surface, the same lens re-focuses that light into the direction from which it came. This configuration is sometimes called a cat's eye retroreflector. Any retroreflective surface is brightest around the antisolar point. Opposition surge by other particles than water and the glory in water vapour are similar effects caused by different mechanisms. See also * Aureole effect * Brocken spectre, the magnified shadow of an observer cast upon the upper surfaces of clouds opposite ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Heiligenschein
(; ) is an optical phenomenon in which a bright spot appears around the shadow of the viewer's head in the presence of dew. In photogrammetry and remote sensing, it is more commonly known as the hotspot. It is also occasionally known as Cellini's halo after the Italian artist and writer Benvenuto Cellini (15001571), who described the phenomenon in his memoirs in 1562. Nearly spherical dew droplets act as lenses to focus the light onto the surface behind them. When this light scatters or reflects off that surface, the same lens re-focuses that light into the direction from which it came. This configuration is sometimes called a cat's eye retroreflector. Any retroreflective surface is brightest around the antisolar point. Opposition surge by other particles than water and the glory in water vapour are similar effects caused by different mechanisms. See also * Aureole effect * Brocken spectre, the magnified shadow of an observer cast upon the upper surfaces of clouds opposite ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Brocken Spectre
A Brocken spectre (British English; American spelling Brocken specter; german: Brockengespenst), also called Brocken bow, mountain spectre, or spectre of the Brocken is the magnified (and apparently enormous) shadow of an observer cast in mid air upon any type of cloud opposite a strong light source. Additionally, if the cloud consists of water droplets backscattered, a bright area called , and halo-like rings of rainbow coloured light called a glory can be seen around the head or apperature silhouette of the spectre. Typically the spectre appears in sunlight opposite the sun's direction at the antisolar point. The phenomenon can appear on any misty mountainside, cloud bank, or be seen from an aircraft, but the frequent fogs and low-altitude accessibility of the Brocken, a peak in the Harz Mountains in Germany, have created a local legend from which the phenomenon draws its name. The Brocken spectre was observed and described by Johann Silberschlag in 1780, and has often been r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aureole Effect
The aureole effect or water aureole is an optical phenomenon similar to Heiligenschein, creating sparkling light and dark rays radiating from the shadow of the viewer's head. This effect is seen only over a rippling water surface. The waves act as lenses to focus and defocus sunlight: focused sunlight produces the lighter rays, while defocused sunlight produces the darker rays. Suspended particles in the water help make the aureole effect more pronounced. The effect extends a greater angular distance from the viewer's shadow when the viewer is higher above the water, and can sometimes be seen from a plane. Although the focused (light) ray cones are actually more or less parallel to each other, the rays from the aureole effect appear to be radiating from the shadow of the viewer’s head due to perspective effects. The viewer's line of sight is parallel and lies within the cones, so from the viewer's perspective the rays seem to be radiating from the antisolar point, within the view ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Opposition Surge
The opposition surge (sometimes known as the opposition effect, opposition spike or Seeliger effect) is the brightening of a rough surface, or an object with many particles, when illuminated from directly behind the observer. The term is most widely used in astronomy, where generally it refers to the sudden noticeable increase in the brightness of a celestial body such as a planet, moon, or comet as its phase angle of observation approaches zero. It is so named because the reflected light from the Moon and Mars appear significantly brighter than predicted by simple Lambertian reflectance when at astronomical opposition. Two physical mechanisms have been proposed for this observational phenomenon: shadow hiding and coherent backscatter. Overview The phase angle is defined as the angle between the observer, the observed object and the source of light. In the case of the Solar System, the light source is the Sun, and the observer is generally on Earth. At zero phase angle, the Sun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Antisolar Point
The antisolar point is the abstract point on the celestial sphere directly opposite the Sun from an observer's perspective. This means that the antisolar point lies above the horizon when the Sun is below it, and vice versa. On a sunny day, the antisolar point can be easily found; it is located within the shadow of the observer's head. Like the zenith and nadir, the antisolar point is not fixed in three-dimensional space, but is defined relative to the observer. Each observer has an antisolar point that moves as the observer changes position. The antisolar point forms the geometric center of several optical phenomena, including subhorizon haloes, rainbows, glories, the Brocken spectre, and heiligenschein. Occasionally, around sunset or sunrise, anticrepuscular rays appear to converge toward the antisolar point near the horizon. However, this is an optical illusion caused by perspective; in reality, the "rays" (i.e. bands of shadow) run near-parallel to each other. Also arou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Retroreflector
A retroreflector (sometimes called a retroflector or cataphote) is a device or surface that reflects radiation (usually light) back to its source with minimum scattering. This works at a wide range of angle of incidence, unlike a planar mirror, which does this only if the mirror is exactly perpendicular to the wave front, having a zero angle of incidence. Being directed, the retroflector's reflection is brighter than that of a diffuse reflector. Corner reflectors and cat's eye reflectors are the most used kinds. Types There are several ways to obtain retroreflection: Corner reflector A set of three mutually perpendicular reflective surfaces, placed to form the internal corner of a cube, work as a retroreflector. The three corresponding normal vectors of the corner's sides form a basis in which to represent the direction of an arbitrary incoming ray, . When the ray reflects from the first side, say x, the ray's ''x''-component, ''a'', is reversed to −''a'', while the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gegenschein
Gegenschein (; ; ) or counterglow is a faintly bright spot in the night sky centered at the antisolar point. The backscatter of sunlight by interplanetary dust causes this optical phenomenon. Explanation Like zodiacal light, gegenschein is sunlight scattered by interplanetary dust. Most of this dust orbits the Sun near the ecliptic plane, with a possible concentration of particles centered at the point of the Earth–Sun system. Gegenschein is distinguished from zodiacal light by its high angle of reflection of the incident sunlight on the dust particles. It forms a slightly brighter elliptical spot of 8-10° across  directly opposite the Sun within the dimmer band of zodiacal light and zodiac constellation. The intensity of the gegenschein is relatively enhanced because each dust particle is seen at full phase, having a difficult to measure apparent magnitude of +5 to +6, with a very low surface brightness in the +10 to +12 magnitude range. History It is commonly stat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Glory (optical Phenomenon)
A glory is an optical phenomenon, resembling an iconic saint's halo around the shadow of the observer's head, caused by sunlight or (more rarely) moonlight interacting with the tiny water droplets that comprise mist or clouds. The glory consists of one or more concentric, successively dimmer rings, each of which is red on the outside and bluish towards the centre. Due to its appearance, the phenomenon is sometimes mistaken for a circular rainbow, but the latter has a much larger diameter and is caused by different physical processes. Glories arise due to wave interference of light internally refracted within small droplets. Appearance and observation Depending on circumstances (such as the uniformity of droplet size in the clouds), one or more of the glory's rings can be visible. The angular size of the inner and brightest ring is much smaller than that of a rainbow, about 5° to 20°, depending on the size of the droplets. In the right conditions, a glory and a rainbow can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cat's Eye Retroreflector
A retroreflector (sometimes called a retroflector or cataphote) is a device or surface that reflects radiation (usually light) back to its source with minimum scattering. This works at a wide range of angle of incidence, unlike a planar mirror, which does this only if the mirror is exactly perpendicular to the wave front, having a zero angle of incidence. Being directed, the retroflector's reflection is brighter than that of a diffuse reflector. Corner reflectors and cat's eye reflectors are the most used kinds. Types There are several ways to obtain retroreflection: Corner reflector A set of three mutually perpendicular reflective surfaces, placed to form the internal corner of a cube, work as a retroreflector. The three corresponding normal vectors of the corner's sides form a basis in which to represent the direction of an arbitrary incoming ray, . When the ray reflects from the first side, say x, the ray's ''x''-component, ''a'', is reversed to −''a'', while the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Optical Phenomenon
Optical phenomena are any observable events that result from the interaction of light and matter. All optical phenomena coincide with quantum phenomena. Common optical phenomena are often due to the interaction of light from the sun or moon with the atmosphere, clouds, water, dust, and other particulates. One common example is the rainbow, when light from the sun is reflected and refracted by water droplets. Some phenomena, such as the green ray, are so rare they are sometimes thought to be mythical. Others, such as Fata Morganas, are commonplace in favored locations. Other phenomena are simply interesting aspects of optics, or optical effects. For instance, the colors generated by a prism are often shown in classrooms. List Optical phenomena include those arising from the optical properties of the atmosphere; the rest of nature (other phenomena); of objects, whether natural or human-made (optical effects); and of our eyes (Entoptic phenomena). Also listed here are unexpla ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Benvenuto Cellini
Benvenuto Cellini (, ; 3 November 150013 February 1571) was an Italian goldsmith, sculptor, and author. His best-known extant works include the ''Cellini Salt Cellar'', the sculpture of ''Perseus with the Head of Medusa'', and his autobiography, which has been described as "one of the most important documents of the 16th century." Biography Youth Benvenuto Cellini was born in Florence, in present-day Italy. His parents were Giovanni Cellini and Maria Lisabetta Granacci. They were married for 18 years before the birth of their first child. Benvenuto was the second child of the family. The son of a musician and builder of musical instruments, Cellini was pushed towards music, but when he was fifteen, his father reluctantly agreed to apprentice him to a goldsmith, Antonio di Sandro, nicknamed Marcone. At the age of 16, Benvenuto had already attracted attention in Florence by taking part in an affray with youthful companions. He was banished for six months and lived in Siena, wher ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aureola
An aureola or aureole (diminutive of Latin ''aurea'', "golden") is the radiance of luminous cloud which, in paintings of sacred personages, surrounds the whole figure. In Romance languages, the noun Aureola is usually more related to the disc of light surrounding the head of sacred figures and that in English is called Halo or Nimbus. In art In the earliest periods of Christian art it was confined to the figures of the persons of the Christian Godhead, but it was afterwards extended to the Virgin Mary and to several of the saints. The aureola, when enveloping the whole body, generally appears oval or elliptical in form, but occasionally depicted as circular, vesica piscis, or quatrefoil. When it appears merely as a luminous disk round the head, it is called specifically a ''halo'' or ''nimbus'', while the combination of nimbus and aureole is called a '' glory''. The strict distinction between nimbus and aureole is not commonly maintained, and the latter term is most freq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]