Happens-before
   HOME





Happens-before
In computer science, the happened-before relation (denoted: \to \;) is a relation between the result of two events, such that if one event should happen before another event, the result must reflect that, even if those events are in reality executed out of order (usually to optimize program flow). This involves ordering events based on the potential causal relationship of pairs of events in a concurrent system, especially asynchronous distributed systems. It was formulated by Leslie Lamport. The happened-before relation is formally defined as the least strict partial order on events such that: * If events a \; and b \; occur on the same process, a \to b\; if the occurrence of event a \; preceded the occurrence of event b \;. * If event a \; is the sending of a message and event b \; is the reception of the message sent in event a \;, a \to b\;. If two events happen in different isolated processes (that do not exchange messages directly or indirectly via third-party processes), then ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Java Memory Model
The Java memory model describes how threads in the Java programming language interact through memory. Together with the description of single-threaded execution of code, the memory model provides the semantics of the Java programming language. The original Java memory model developed in 1995, was widely perceived as broken, preventing many runtime optimizations and not providing strong enough guarantees for code safety. It was updated through the Java Community Process, as Java Specification Request 133 (JSR-133), which took effect back in 2004, for Tiger (Java 5.0). Context The Java programming language and platform provide thread capabilities. Synchronization between threads is notoriously difficult for developers; this difficulty is compounded because Java applications can run on a wide range of processors and operating systems. To be able to draw conclusions about a program's behavior, Java's designers decided they had to clearly define possible behaviors of all Java ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Race Condition
A race condition or race hazard is the condition of an electronics, software, or other system where the system's substantive behavior is dependent on the sequence or timing of other uncontrollable events, leading to unexpected or inconsistent results. It becomes a bug when one or more of the possible behaviors is undesirable. The term ''race condition'' was already in use by 1954, for example in David A. Huffman's doctoral thesis "The synthesis of sequential switching circuits". Race conditions can occur especially in logic circuits or multithreaded or distributed software programs. Using mutual exclusion can prevent race conditions in distributed software systems. In electronics A typical example of a race condition may occur when a logic gate combines signals that have traveled along different paths from the same source. The inputs to the gate can change at slightly different times in response to a change in the source signal. The output may, for a brief period, chan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lamport Timestamps
The Lamport timestamp algorithm is a simple logical clock algorithm used to determine the order of events in a distributed computer system. As different nodes or processes will typically not be perfectly synchronized, this algorithm is used to provide a partial ordering of events with minimal overhead, and conceptually provide a starting point for the more advanced vector clock method. The algorithm is named after its creator, Leslie Lamport. Distributed algorithms such as resource synchronization often depend on some method of ordering events to function. For example, consider a system with two processes and a disk. The processes send messages to each other, and also send messages to the disk requesting access. The disk grants access in the order the messages were ''received''. For example process A sends a message to the disk requesting write access, and then sends a read instruction message to process B. Process B receives the message, and as a result sends its own read reques ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lamport Clock
The Lamport timestamp algorithm is a simple logical clock algorithm used to determine the order of events in a distributed computer system. As different nodes or processes will typically not be perfectly synchronized, this algorithm is used to provide a Partially ordered set, partial ordering of events with minimal overhead, and conceptually provide a starting point for the more advanced vector clock method. The algorithm is named after its creator, Leslie Lamport. Distributed algorithms such as resource synchronization often depend on some method of ordering events to function. For example, consider a system with two processes and a disk. The processes send messages to each other, and also send messages to the disk requesting access. The disk grants access in the order the messages were ''received''. For example process A sends a message to the disk requesting write access, and then sends a read instruction message to process B. Process B receives the message, and as a result sends ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, applied disciplines (including the design and implementation of Computer architecture, hardware and Software engineering, software). Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and preventing security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Programming language theory considers different ways to describe computational processes, and database theory concerns the management of re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Logical Clock
A logical clock is a mechanism for capturing chronological and causal relationships in a distributed system. Often, distributed systems may have no physically synchronous global clock. In many applications (such as distributed GNU make), if two processes never interact, the lack of synchronization is unobservable and in these applications it is enough for the processes to agree on the event ordering (i.e., logical clock) rather than the wall-clock time. The first logical clock implementation, the Lamport timestamps, was proposed by Leslie Lamport in 1978 (Turing Award in 2013). Local vs global time In logical clock systems each process has two data structures: ''logical local time'' and ''logical global time''. Logical local time is used by the process to mark its own events, and logical global time is the local information about global time. A special protocol is used to update logical local time after each local event, and logical global time when processes exchange data.
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logical Clock Algorithms
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. Informal logic examines arguments expressed in natural language whereas formal logic uses formal language. When used as a countable noun, the term "a logic" refers to a specific logical formal system that articulates a proof system. Logic plays a central role in many fields, such as philosophy, mathematics, computer science, and linguistics. Logic studies arguments, which consist of a set of premises that leads to a conclusion. An example is the argument from the premises "it's Sunday" and "if it's Sunday then I don't have to work" leading to the conclusion "I don't have to work." Premis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Logical Clock
A logical clock is a mechanism for capturing chronological and causal relationships in a distributed system. Often, distributed systems may have no physically synchronous global clock. In many applications (such as distributed GNU make), if two processes never interact, the lack of synchronization is unobservable and in these applications it is enough for the processes to agree on the event ordering (i.e., logical clock) rather than the wall-clock time. The first logical clock implementation, the Lamport timestamps, was proposed by Leslie Lamport in 1978 (Turing Award in 2013). Local vs global time In logical clock systems each process has two data structures: ''logical local time'' and ''logical global time''. Logical local time is used by the process to mark its own events, and logical global time is the local information about global time. A special protocol is used to update logical local time after each local event, and logical global time when processes exchange data.
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mutual Exclusion
In computer science, mutual exclusion is a property of concurrency control, which is instituted for the purpose of preventing race conditions. It is the requirement that one thread of execution never enters a critical section while a concurrent thread of execution is already accessing said critical section, which refers to an interval of time during which a thread of execution accesses a shared resource or shared memory. The shared resource is a data object, which two or more concurrent threads are trying to modify (where two concurrent read operations are permitted but, no two concurrent write operations or one read and one write are permitted, since it leads to data inconsistency). Mutual exclusion algorithms ensure that if a process is already performing write operation on a data object ritical sectionno other process/thread is allowed to access/modify the same object until the first process has finished writing upon the data object ritical sectionand released the obj ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vector Clock
A vector clock is a data structure used for determining the partial ordering of events in a distributed system and detecting causality violations. Just as in Lamport timestamps, inter-process messages contain the state of the sending process's logical clock. A vector clock of a system of ''N'' processes is an array/vector of ''N'' logical clocks, one clock per process; a local "largest possible values" copy of the global clock-array is kept in each process. Denote VC_i as the vector clock maintained by process i, the clock updates proceed as follows: * Initially all clocks are zero. * Each time a process experiences an internal event, it increments its own logical clock in the vector by one. For instance, upon an event at process i, it updates VC_ \leftarrow VC_ + 1. * Each time a process sends a message, it increments its own logical clock in the vector by one (as in the bullet above, but not twice for the same event) then it pairs the message with a copy of its own vector ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Asymmetric Relation
In mathematics, an asymmetric relation is a binary relation R on a set X where for all a, b \in X, if a is related to b then b is ''not'' related to a. Formal definition Preliminaries A binary relation on X is any subset R of X \times X. Given a, b \in X, write a R b if and only if (a, b) \in R, which means that a R b is shorthand for (a, b) \in R. The expression a R b is read as "a is related to b by R." Definition The binary relation R is called if for all a, b \in X, if a R b is true then b R a is false; that is, if (a, b) \in R then (b, a) \not\in R. This can be written in the notation of first-order logic as \forall a, b \in X: a R b \implies \lnot(b R a). A logically equivalent definition is: :for all a, b \in X, at least one of a R b and b R a is , which in first-order logic can be written as: \forall a, b \in X: \lnot(a R b \wedge b R a). A relation is asymmetric if and only if it is both antisymmetric and irreflexive, so this may also be taken as a definit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Relation
In mathematics, a binary relation associates some elements of one Set (mathematics), set called the ''domain'' with some elements of another set called the ''codomain''. Precisely, a binary relation over sets X and Y is a set of ordered pairs (x, y), where x is an element of X and y is an element of Y. It encodes the common concept of relation: an element x is ''related'' to an element y, if and only if the pair (x, y) belongs to the set of ordered pairs that defines the binary relation. An example of a binary relation is the "divides" relation over the set of prime numbers \mathbb and the set of integers \mathbb, in which each prime p is related to each integer z that is a Divisibility, multiple of p, but not to an integer that is not a Multiple (mathematics), multiple of p. In this relation, for instance, the prime number 2 is related to numbers such as -4, 0, 6, 10, but not to 1 or 9, just as the prime number 3 is related to 0, 6, and 9, but not to 4 or 13. Binary relations ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]