Hyperarithmetical Theory
In recursion theory, hyperarithmetic theory is a generalization of Turing computability. It has close connections with definability in second-order arithmetic and with weak systems of set theory such as Kripke–Platek set theory. It is an important tool in effective descriptive set theory. The central focus of hyperarithmetic theory is the sets of natural numbers known as hyperarithmetic sets. There are three equivalent ways of defining this class of sets; the study of the relationships between these different definitions is one motivation for the study of hyperarithmetical theory. Hyperarithmetical sets and definability The first definition of the hyperarithmetic sets uses the analytical hierarchy. A set of natural numbers is classified at level \Sigma^1_1 of this hierarchy if it is definable by a formula of second-order arithmetic with only existential set quantifiers and no other set quantifiers. A set is classified at level \Pi^1_1 of the analytical hierarchy if it is d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Recursion Theory
Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since expanded to include the study of generalized computability and definability. In these areas, computability theory overlaps with proof theory and effective descriptive set theory. Basic questions addressed by computability theory include: * What does it mean for a function on the natural numbers to be computable? * How can noncomputable functions be classified into a hierarchy based on their level of noncomputability? Although there is considerable overlap in terms of knowledge and methods, mathematical computability theorists study the theory of relative computability, reducibility notions, and degree structures; those in the computer science field focus on the theory of subrecursive hierarchies, formal methods, and formal languages. I ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Large Countable Ordinal
In the mathematical discipline of set theory, there are many ways of describing specific countable ordinals. The smallest ones can be usefully and non-circularly expressed in terms of their Cantor normal forms. Beyond that, many ordinals of relevance to proof theory still have computable ordinal notations (see ordinal analysis). However, it is not possible to decide effectively whether a given putative ordinal notation is a notation or not (for reasons somewhat analogous to the unsolvability of the halting problem); various more-concrete ways of defining ordinals that definitely have notations are available. Since there are only countably many notations, all ordinals with notations are exhausted well below the first uncountable ordinal ω1; their supremum is called ''Church–Kleene'' ω1 or ω1CK (not to be confused with the first uncountable ordinal, ω1), described below. Ordinal numbers below ω1CK are the recursive ordinals (see below). Countable ordinals larger than this may ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Julia F
Julia is usually a feminine given name. It is a Latinate feminine form of the name Julio and Julius. (For further details on etymology, see the Wiktionary entry "Julius".) The given name ''Julia'' had been in use throughout Late Antiquity (e.g. Julia of Corsica) but became rare during the Middle Ages, and was revived only with the Italian Renaissance. It became common in the English-speaking world only in the 18th century. Today, it is frequently used throughout the world. Statistics Julia was the 10th most popular name for girls born in the United States in 2007 and the 88th most popular name for women in the 1990 census there. It has been among the top 150 names given to girls in the United States for the past 100 years. It was the 89th most popular name for girls born in England and Wales in 2007; the 94th most popular name for girls born in Scotland in 2007; the 13th most popular name for girls born in Spain in 2006; the 5th most popular name for girls born in Sweden ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Admissible Ordinal
In set theory, an ordinal number ''α'' is an admissible ordinal if L''α'' is an admissible set (that is, a transitive model of Kripke–Platek set theory); in other words, ''α'' is admissible when ''α'' is a limit ordinal and L''α'' ⊧ Σ0-collection.. See in particulap. 265. The term was coined by Richard Platek in 1966. The first two admissible ordinals are ω and \omega_1^ (the least non-recursive ordinal, also called the Church–Kleene ordinal). Any regular uncountable cardinal is an admissible ordinal. By a theorem of Sacks, the countable admissible ordinals are exactly those constructed in a manner similar to the Church–Kleene ordinal, but for Turing machines with oracles. One sometimes writes \omega_\alpha^ for the \alpha-th ordinal that is either admissible or a limit of admissibles; an ordinal that is both is called ''recursively inaccessible''. There exists a theory of large ordinals in this manner that is highly parallel to that of (small) large c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alpha Recursion Theory
In recursion theory, α recursion theory is a generalisation of recursion theory to subsets of admissible ordinals \alpha. An admissible set is closed under \Sigma_1(L_\alpha) functions, where L_\xi denotes a rank of Godel's constructible hierarchy. \alpha is an admissible ordinal if L_ is a model of Kripke–Platek set theory. In what follows \alpha is considered to be fixed. The objects of study in \alpha recursion are subsets of \alpha. These sets are said to have some properties: *A set A\subseteq\alpha is said to be \alpha-recursively-enumerable if it is \Sigma_1 definable over L_\alpha, possibly with parameters from L_\alpha in the definition. *A is \alpha-recursive if both A and \alpha \setminus A (its relative complement in \alpha) are \alpha-recursively-enumerable. It's of note that \alpha-recursive sets are members of L_ by definition of L. *Members of L_\alpha are called \alpha-finite and play a similar role to the finite numbers in classical recursion theory. *Members ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Baire Space
In mathematics, a topological space X is said to be a Baire space if countable unions of closed sets with empty interior also have empty interior. According to the Baire category theorem, compact Hausdorff spaces and complete metric spaces are examples of Baire spaces. The Baire category theorem combined with the properties of Baire spaces has numerous applications in topology, geometry, analysis, in particular functional analysis. Bourbaki introduced the term "Baire space" in honor of René Baire, who investigated the Baire category theorem in the context of Euclidean space \R^n in his 1899 thesis. Definition The definition that follows is based on the notions of meagre (or first category) set (namely, a set that is a countable union of sets whose closure has empty interior) and nonmeagre (or second category) set (namely, a set that is not meagre). See the corresponding article for details. A topological space X is called a Baire space if it satisfies any of the follo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Recursive Ordinal
In mathematics, specifically computability and set theory, an ordinal \alpha is said to be computable or recursive if there is a computable well-ordering of a subset of the natural numbers having the order type \alpha. It is easy to check that \omega is computable. The successor of a computable ordinal is computable, and the set of all computable ordinals is closed downwards. The supremum of all computable ordinals is called the Church–Kleene ordinal, the first nonrecursive ordinal, and denoted by \omega^_1. The Church–Kleene ordinal is a limit ordinal. An ordinal is computable if and only if it is smaller than \omega^_1. Since there are only countably many computable relations, there are also only countably many computable ordinals. Thus, \omega^_1 is countable. The computable ordinals are exactly the ordinals that have an ordinal notation in Kleene's \mathcal. See also *Arithmetical hierarchy *Large countable ordinal *Ordinal analysis *Ordinal notation References * ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Many-one Reduction
In computability theory and computational complexity theory, a many-one reduction (also called mapping reduction) is a reduction which converts instances of one decision problem L_1 into instances of a second decision problem L_2 where the instance reduced to is in the language L_2 if the initial instance was in its language L_1 and is not in the language L_2 if the initial instance was not in its language L_1. Thus if we can decide whether L_2 instances are in the language L_2, we can decide whether L_1 instances are in its language by applying the reduction and solving L_2. Thus, reductions can be used to measure the relative computational difficulty of two problems. It is said that L_1 reduces to L_2 if, in layman's terms L_2 is harder to solve than L_1. That is to say, any algorithm that solves L_2 can also be used as part of a (otherwise relatively simple) program that solves L_1. Many-one reductions are a special case and stronger form of Turing reductions. With many-one red ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tarski's Indefinability Theorem
Tarski's undefinability theorem, stated and proved by Alfred Tarski in 1933, is an important limitative result in mathematical logic, the foundations of mathematics, and in formal semantics. Informally, the theorem states that ''arithmetical truth cannot be defined in arithmetic''. The theorem applies more generally to any sufficiently strong formal system, showing that truth in the standard model of the system cannot be defined within the system. History In 1931, Kurt Gödel published the incompleteness theorems, which he proved in part by showing how to represent the syntax of formal logic within first-order arithmetic. Each expression of the formal language of arithmetic is assigned a distinct number. This procedure is known variously as Gödel numbering, ''coding'' and, more generally, as arithmetization. In particular, various ''sets'' of expressions are coded as sets of numbers. For various syntactic properties (such as ''being a formula'', ''being a sentence'', etc.), these ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Peano Axioms
In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete. The need to formalize arithmetic was not well appreciated until the work of Hermann Grassmann, who showed in the 1860s that many facts in arithmetic could be derived from more basic facts about the successor operation and induction. In 1881, Charles Sanders Peirce provided an axiomatization of natural-number arithmetic. In 1888, Richard Dedekind proposed another axiomatization of natural-number arithmetic, and in 1889, Peano published a simplified version of them as a collection of axioms in his book, ''The principles of arithmetic presented by a new method'' ( la, Arithmet ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Arithmetical Set
In mathematical logic, an arithmetical set (or arithmetic set) is a set of natural numbers that can be defined by a formula of first-order Peano arithmetic. The arithmetical sets are classified by the arithmetical hierarchy. The definition can be extended to an arbitrary countable set ''A'' (e.g. the set of n-tuples of integers, the set of rational numbers, the set of formulas in some formal language, etc.) by using Gödel numbers to represent elements of the set and declaring a subset of ''A'' to be arithmetical if the set of corresponding Gödel numbers is arithmetical. A function f:\subseteq \mathbb^k \to \mathbb is called arithmetically definable if the graph of f is an arithmetical set. A real number is called arithmetical if the set of all smaller rational numbers is arithmetical. A complex number is called arithmetical if its real and imaginary parts are both arithmetical. Formal definition A set ''X'' of natural numbers is arithmetical or arithmetically definable if ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Type Theory
In mathematics, logic, and computer science, a type theory is the formal presentation of a specific type system, and in general type theory is the academic study of type systems. Some type theories serve as alternatives to set theory as a foundation of mathematics. Two influential type theories that were proposed as foundations are Alonzo Church's typed λ-calculus and Per Martin-Löf's intuitionistic type theory. Most computerized proof-writing systems use a type theory for their foundation. A common one is Thierry Coquand's Calculus of Inductive Constructions. History Type theory was created to avoid a paradox in a mathematical foundation based on naive set theory and formal logic. Russell's paradox, which was discovered by Bertrand Russell, existed because a set could be defined using "all possible sets", which included itself. Between 1902 and 1908, Bertrand Russell proposed various "theories of type" to fix the problem. By 1908 Russell arrived at a "ramified" theory ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |