Homotopy Category Of An ∞-category
   HOME





Homotopy Category Of An ∞-category
In mathematics, especially category theory, the homotopy category of an ∞-category ''C'' is the category where the objects are those in ''C'' but the hom-set from ''x'' to ''y'' is the quotient of the set of morphisms from ''x'' to ''y'' in ''C'' by an appropriate equivalence relation. If an ∞-category is defined as a weak Kan complex (usual definition), then the construction is due to Boardman and Vogt, who also gave the definition of an ∞-category as a weak Kan complex. In this case, the homotopy category of an ∞-category ''C'' is equivalent to \tau(C), where \tau is a left adjoint of the nerve functor. For example, the singular complex of a (reasonable) topological space ''X'' is a Kan complex and the homotopy category of it is the fundamental groupoid of ''X''. Boardman–Vogt construction Let ''C'' be an ∞-category. If f, g : x \to y are morphisms (1-simplexes) in ''C'', then we write f \sim g if there is a 2-simplex \sigma : \Delta^2 \to C such that \sigma(0 \t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in most areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient space (other), quotient spaces, direct products, completion, and duality (mathematics), duality. Many areas of computer science also rely on category theory, such as functional programming and Semantics (computer science), semantics. A category (mathematics), category is formed by two sorts of mathematical object, objects: the object (category theory), objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. Metapho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


∞-category
In mathematics, more specifically category theory, a quasi-category (also called quasicategory, weak Kan complex, inner Kan complex, infinity category, ∞-category, Boardman complex, quategory) is a generalization of the notion of a Category (mathematics), category. The study of such generalizations is known as higher category theory. Overview Quasi-categories were introduced by . André Joyal has much advanced the study of quasi-categories showing that most of the usual basic category theory and some of the advanced notions and theorems have their analogues for quasi-categories. An elaborate treatise of the theory of quasi-categories has been expounded by . Quasi-categories are certain simplicial sets. Like ordinary categories, they contain objects (the 0-simplices of the simplicial set) and morphisms between these objects (1-simplices). But unlike categories, the composition of two morphisms need not be uniquely defined. All the morphisms that can serve as composition of tw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equivalence Relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equality. Any number a is equal to itself (reflexive). If a = b, then b = a (symmetric). If a = b and b = c, then a = c (transitive). Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class. Notation Various notations are used in the literature to denote that two elements a and b of a set are equivalent with respect to an equivalence relation R; the most common are "a \sim b" and "", which are used when R is implicit, and variations of "a \sim_R b", "", or "" to specify R explicitly. Non-equivalence may be written "" or "a \not\equiv b". Definitions A binary relation \,\si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weak Kan Complex
In mathematics, more specifically category theory, a quasi-category (also called quasicategory, weak Kan complex, inner Kan complex, infinity category, ∞-category, Boardman complex, quategory) is a generalization of the notion of a category. The study of such generalizations is known as higher category theory. Overview Quasi-categories were introduced by . André Joyal has much advanced the study of quasi-categories showing that most of the usual basic category theory and some of the advanced notions and theorems have their analogues for quasi-categories. An elaborate treatise of the theory of quasi-categories has been expounded by . Quasi-categories are certain simplicial sets. Like ordinary categories, they contain objects (the 0-simplices of the simplicial set) and morphisms between these objects (1-simplices). But unlike categories, the composition of two morphisms need not be uniquely defined. All the morphisms that can serve as composition of two given morphisms are re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Nerve Functor
In category theory, a discipline within mathematics, the nerve ''N''(''C'') of a small category ''C'' is a simplicial set constructed from the objects and morphisms of ''C''. The simplicial set, geometric realization of this simplicial set is a topological space, called the classifying space of the category ''C''. These closely related objects can provide information about some familiar and useful categories using algebraic topology, most often homotopy theory. Motivation The nerve of a category is often used to construct topological versions of moduli spaces. If ''X'' is an object of ''C'', its moduli space should somehow encode all objects isomorphic to ''X'' and keep track of the various isomorphisms between all of these objects in that category. This can become rather complicated, especially if the objects have many non-identity automorphisms. The nerve provides a combinatorial way of organizing this data. Since simplicial sets have a good homotopy theory, one can ask questions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fundamental Groupoid
In algebraic topology, the fundamental groupoid is a certain topological invariant of a topological space. It can be viewed as an extension of the more widely-known fundamental group; as such, it captures information about the homotopy type of a topological space. In terms of category theory, the fundamental groupoid is a certain functor from the category of topological spaces to the category of groupoids. Definition Let be a topological space. Consider the equivalence relation on continuous paths in in which two continuous paths are equivalent if they are homotopic with fixed endpoints. The fundamental groupoid , or , assigns to each ordered pair of points in the collection of equivalence classes of continuous paths from to . More generally, the fundamental groupoid of on a set restricts the fundamental groupoid to the points which lie in both and . This allows for a generalisation of the Van Kampen theorem using two base points to compute the fundamental group of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simplicial Homotopy Class
In algebraic topology, a simplicial homotopy is an analog of a homotopy between topological spaces for simplicial sets. Precisely,pg 23 if :f, g: X \to Y are maps between simplicial sets, a simplicial homotopy from ''f'' to ''g'' is a map :h: X \times \Delta^ \to Y such that the restriction of h along X \simeq X \times \Delta^ \overset\hookrightarrow X \times \Delta^ is f and the restriction along 1 is g; se In particular, f(x) = h(x, 0) and g(x) = h(x, 1) for all ''x'' in ''X''. Using the adjunction :\operatorname(X \times \Delta^1, Y) = \operatorname(\Delta^1 \times X, Y) = \operatorname(\Delta^1, \underline(X, Y)), the simplicial homotopy h can also be thought of as a path in the simplicial set \underline(X, Y). A simplicial homotopy is in general not an equivalence relation. However, if \underline(X, Y) is a Kan complex (e.g., if Y is a Kan complex), then a homotopy from f : X \to Y to g : X \to Y is an equivalence relation. Indeed, a Kan complex is an ∞-groupoid; i.e., every ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weak Equivalence Between Simplicial Sets
In mathematics, especially algebraic topology, a weak equivalence between simplicial sets is a map between simplicial sets that is invertible in some weak sense. Formally, it is a weak equivalence in some model structure on the category of simplicial sets (so the meaning depends on a choice of a model structure.) An ∞-category can be (and is usually today) defined as a simplicial set satisfying the weak Kan condition. Thus, the notion is especially relevant to higher category theory In mathematics, higher category theory is the part of category theory at a ''higher order'', which means that some equalities are replaced by explicit morphism, arrows in order to be able to explicitly study the structure behind those equalities. H .... Equivalent conditions If X, Y are ∞-categories, then a weak equivalence between them in the sense of Joyal is exactly an equivalence of ∞-categories (a map that is invertible in the homotopy category). Let f : X \to Y be a functor between ∠...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press was the university press of the University of Cambridge. Granted a letters patent by King Henry VIII in 1534, it was the oldest university press in the world. Cambridge University Press merged with Cambridge Assessment to form Cambridge University Press and Assessment under Queen Elizabeth II's approval in August 2021. With a global sales presence, publishing hubs, and offices in more than 40 countries, it published over 50,000 titles by authors from over 100 countries. Its publications include more than 420 academic journals, monographs, reference works, school and university textbooks, and English language teaching and learning publications. It also published Bibles, runs a bookshop in Cambridge, sells through Amazon, and has a conference venues business in Cambridge at the Pitt Building and the Sir Geoffrey Cass Sports and Social Centre. It also served as the King's Printer. Cambridge University Press, as part of the University of Cambridge, was a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Category Theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in most areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient space (other), quotient spaces, direct products, completion, and duality (mathematics), duality. Many areas of computer science also rely on category theory, such as functional programming and Semantics (computer science), semantics. A category (mathematics), category is formed by two sorts of mathematical object, objects: the object (category theory), objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. Metapho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]