Geometric Langlands Program
   HOME
*





Geometric Langlands Program
In mathematics, the geometric Langlands correspondence is a reformulation of the Langlands correspondence obtained by replacing the number fields appearing in the original number theory, number theoretic version by function field of an algebraic variety, function fields and applying techniques from algebraic geometry. The geometric Langlands correspondence relates algebraic geometry and representation theory. History In mathematics, the classical Langlands correspondence is a collection of results and conjectures relating number theory and representation theory. Formulated by Robert Langlands in the late 1960s, the Langlands correspondence is related to important conjectures in number theory such as the Taniyama–Shimura conjecture, which includes Fermat's Last Theorem as a special case.Frenkel 2007, p. 3 Establishing the Langlands correspondence in the number theoretic context has proven extremely difficult. As a result, some mathematicians have posed the geometric Langlands corres ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Langlands Correspondence
In representation theory and algebraic number theory, the Langlands program is a web of far-reaching and influential conjectures about connections between number theory and geometry. Proposed by , it seeks to relate Galois groups in algebraic number theory to automorphic forms and representation theory of algebraic groups over local fields and adeles. Widely seen as the single biggest project in modern mathematical research, the Langlands program has been described by Edward Frenkel as "a kind of grand unified theory of mathematics." The Langlands program consists of some very complicated theoretical abstractions, which can be difficult even for specialist mathematicians to grasp. To oversimplify, the fundamental lemma of the project posits a direct connection between the generalized fundamental representation of a finite field with its group extension to the automorphic forms under which it is invariant. This is accomplished through abstraction to higher dimensional integ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Number Fields
In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a field that contains \mathbb and has finite dimension when considered as a vector space over The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory. This study reveals hidden structures behind usual rational numbers, by using algebraic methods. Definition Prerequisites The notion of algebraic number field relies on the concept of a field. A field consists of a set of elements together with two operations, namely addition, and multiplication, and some distributivity assumptions. A prominent example of a field is the field of rational numbers, commonly denoted together with its usual operations of addition and multiplication ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."German original: "Die Mathematik ist die Königin der Wissenschaften, und die Arithmetik ist die Königin der Mathematik." Number theorists study prime numbers as well as the properties of mathematical objects made out of integers (for example, rational numbers) or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory are often best understood through the study of analytical objects (for example, the Riemann zeta function) that encode properties of the integers, primes or other number-theoretic object ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Function Field Of An Algebraic Variety
In algebraic geometry, the function field of an algebraic variety ''V'' consists of objects which are interpreted as rational functions on ''V''. In classical algebraic geometry they are ratios of polynomials; in complex algebraic geometry these are meromorphic functions and their higher-dimensional analogues; in modern algebraic geometry they are elements of some quotient ring's field of fractions. Definition for complex manifolds In complex algebraic geometry the objects of study are complex analytic varieties, on which we have a local notion of complex analysis, through which we may define meromorphic functions. The function field of a variety is then the set of all meromorphic functions on the variety. (Like all meromorphic functions, these take their values in \mathbb\cup\infty.) Together with the operations of addition and multiplication of functions, this is a field in the sense of algebra. For the Riemann sphere, which is the variety \mathbb^1 over the complex numbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Representation Theory
Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication). The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories. The algebraic objects amenable to such a description include groups, associative algebras and Lie algebras. The most prominent of these (and historically the first) is the representation theory of groups, in which elements of a group are represented by invertible matrices in such a way that the group operation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Robert Langlands
Robert Phelan Langlands, (; born October 6, 1936) is a Canadian mathematician. He is best known as the founder of the Langlands program, a vast web of conjectures and results connecting representation theory and automorphic forms to the study of Galois groups in number theory, for which he received the 2018 Abel Prize. He was an emeritus professor and occupied Albert Einstein's office at the Institute for Advanced Study in Princeton, until 2020 when he retired. Career Langlands was born in New Westminster, British Columbia, Canada, in 1936 to Robert Langlands and Kathleen J Phelan. He has two younger sisters (Mary b 1938; Sally b 1941). In 1945, his family moved to White Rock, near the US border, where his parents had a building supply and construction business. He graduated from Semiahmoo Secondary School and started enrolling at the University of British Columbia at the age of 16, receiving his undergraduate degree in Mathematics in 1957; he continued at UBC to receive an M ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fermat's Last Theorem
In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers , , and satisfy the equation for any integer value of greater than 2. The cases and have been known since antiquity to have infinitely many solutions.Singh, pp. 18–20. The proposition was first stated as a theorem by Pierre de Fermat around 1637 in the margin of a copy of ''Arithmetica''. Fermat added that he had a proof that was too large to fit in the margin. Although other statements claimed by Fermat without proof were subsequently proven by others and credited as theorems of Fermat (for example, Fermat's theorem on sums of two squares), Fermat's Last Theorem resisted proof, leading to doubt that Fermat ever had a correct proof. Consequently the proposition became known as a conjecture rather than a theorem. After 358 years of effort by mathematicians, the first successful proof was released in 1994 by Andrew Wiles and for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Anton Kapustin
Anton Nikolayevich Kapustin (born November 10, 1971, Moscow) is a Russian-American theoretical physicist and the Earle C. Anthony Professor of Theoretical Physics at the California Institute of Technology. His interests lie in quantum field theory and string theory, and their applications to particle physics and condensed matter theory. He is the son of the pianist-composer Nikolai Kapustin. Education Kapustin obtained a B.S. in physics from Moscow State University in 1993. He received a Ph.D. in physics from the California Institute of Technology in 1997 with John Preskill as his advisor. Research He has made several contributions to dualities and other aspects of quantum field theories, in particular topological field theories and supersymmetric gauge theories. With Edward Witten he discovered deep connections between the S-duality of supersymmetric gauge theories and the geometric Langlands correspondence In mathematics, the geometric Langlands correspondence is a refo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Edward Witten
Edward Witten (born August 26, 1951) is an American mathematical and theoretical physicist. He is a Professor Emeritus in the School of Natural Sciences at the Institute for Advanced Study in Princeton. Witten is a researcher in string theory, quantum gravity, supersymmetric quantum field theories, and other areas of mathematical physics. Witten's work has also significantly impacted pure mathematics. In 1990, he became the first physicist to be awarded a Fields Medal by the International Mathematical Union, for his mathematical insights in physics, such as his 1981 proof of the positive energy theorem in general relativity, and his interpretation of the Jones invariants of knots as Feynman integrals. He is considered the practical founder of M-theory.Duff 1998, p. 65 Early life and education Witten was born on August 26, 1951, in Baltimore, Maryland, to a Jewish family. He is the son of Lorraine (née Wollach) Witten and Louis Witten, a theoretical physicist specializing in gr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

S-duality
In theoretical physics, S-duality (short for strong–weak duality, or Sen duality) is an equivalence of two physical theories, which may be either quantum field theories or string theories. S-duality is useful for doing calculations in theoretical physics because it relates a theory in which calculations are difficult to a theory in which they are easier. In quantum field theory, S-duality generalizes a well established fact from classical electrodynamics, namely the invariance of Maxwell's equations under the interchange of electric and magnetic fields. One of the earliest known examples of S-duality in quantum field theory is Montonen–Olive duality which relates two versions of a quantum field theory called ''N'' = 4 supersymmetric Yang–Mills theory. Recent work of Anton Kapustin and Edward Witten suggests that Montonen–Olive duality is closely related to a research program in mathematics called the geometric Langlands program. Another realization of S-duality in q ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]