Generalized Büchi Automaton
   HOME





Generalized Büchi Automaton
In automata theory, a generalized Büchi automaton is a variant of a Büchi automaton. The difference with the Büchi automaton is the accepting condition, which is determined by a set of sets of states. A run is accepted by the automaton if it visits at least one state of every set of the accepting condition infinitely often. Generalized Büchi automata are equivalent in expressive power to Büchi automata; a transformation is given here. In formal verification, the model checking method needs to obtain an automaton from a LTL formula that specifies the desired program property. There are algorithms that translate a LTL formula into a generalized Büchi automaton. M. Y. Vardi and P. Wolper, Reasoning about infinite computations, Information and Computation, 115(1994), 1–37. Y. Kesten, Z. Manna, H. McGuire, A. Pnueli, A decision algorithm for full propositional temporal logic, CAV’93, Elounda, Greece, LNCS 697, Springer–Verlag, 97-109. R. Gerth, D. Peled, M.Y. Vardi and P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Automata Theory
Automata theory is the study of abstract machines and automata, as well as the computational problems that can be solved using them. It is a theory in theoretical computer science with close connections to cognitive science and mathematical logic. The word ''automata'' comes from the Greek word αὐτόματος, which means "self-acting, self-willed, self-moving". An automaton (automata in plural) is an abstract self-propelled computing device which follows a predetermined sequence of operations automatically. An automaton with a finite number of states is called a finite automaton (FA) or finite-state machine (FSM). The figure on the right illustrates a finite-state machine, which is a well-known type of automaton. This automaton consists of states (represented in the figure by circles) and transitions (represented by arrows). As the automaton sees a symbol of input, it makes a transition (or jump) to another state, according to its transition function, which takes the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Information And Computation
''Information and Computation'' is a closed-access computer science journal published by Elsevier (formerly Academic Press). The journal was founded in 1957 under its former name ''Information and Control'' and given its current title in 1987. , the current editor-in-chief is David Peleg. The journal publishes 12 issues a year. History ''Information and Computation'' was founded as ''Information and Control'' in 1957 at the initiative of Leon Brillouin and under the editorship of Leon Brillouin, Colin Cherry and Peter Elias. Murray Eden joined as editor in 1962 and became sole editor-in-chief in 1967. He was succeeded by Albert R. Meyer in 1981, under whose editorship the journal was rebranded ''Information and Computation'' in 1987 in response to the shifted focus of the journal towards theory of computation and away from control theory. In 2020, Albert Mayer was succeeded by David Peleg as editor-in-chief of the journal. Indexing All articles from the ''Information and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


ω-language
In formal language theory within theoretical computer science, an infinite word is an infinite-length sequence (specifically, an ω-length sequence) of symbols, and an ω-language is a set of infinite words. Here, ω refers to the first infinite ordinal number, modeling a set of natural numbers. Formal definition Let Σ be a set of symbols (not necessarily finite). Following the standard definition from formal language theory, Σ* is the set of all ''finite'' words over Σ. Every finite word has a length, which is a natural number. Given a word ''w'' of length ''n'', ''w'' can be viewed as a function from the set → Σ, with the value at ''i'' giving the symbol at position ''i''. The infinite words, or ω-words, can likewise be viewed as functions from \mathbb to Σ. The set of all infinite words over Σ is denoted Σω. The set of all finite ''and'' infinite words over Σ is sometimes written Σ∞ or Σ≤ω. Thus an ω-language ''L'' over Σ is a subset of Σω. Operations ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]



MORE