Gap Loss
   HOME
*



picture info

Gap Loss
Gap loss is a type of signal strength loss that occurs in fiber optic transmission when the signal is transferred from one section of fiber or cable to another. The three basic types of gap loss are angular misalignment loss, lateral offset loss, and longitudinal displacement loss. The losses tend to be proportional to the ratio of the core radius to the size of the gap or displacement. Formulas, examples and graphs can be found aFiber Optic Communication - Couplers and ConnectorsGap loss can be reduced by filling the gap with a gel that matches the index of refraction of the fiber as closely as possible. Definition Specifically, gap loss happens when the signal from one end of a piece of cable is transferred to another, but there is a space, breakage, or gap between them. Since fiber optics transmit data via light the light can cross this gap, but spreads out and is weakened and diffused when it does so. The light that crosses the gap and enters the next section of cable is br ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gap Loss (en)
Gap loss is a type of signal strength loss that occurs in fiber optic transmission when the signal is transferred from one section of fiber or cable to another. The three basic types of gap loss are angular misalignment loss, lateral offset loss, and longitudinal displacement loss. The losses tend to be proportional to the ratio of the core radius to the size of the gap or displacement. Formulas, examples and graphs can be found aFiber Optic Communication - Couplers and ConnectorsGap loss can be reduced by filling the gap with a gel that matches the index of refraction of the fiber as closely as possible. Definition Specifically, gap loss happens when the signal from one end of a piece of cable is transferred to another, but there is a space, breakage, or gap between them. Since fiber optics transmit data via light the light can cross this gap, but spreads out and is weakened and diffused when it does so. The light that crosses the gap and enters the next section of cable is br ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Signal Strength
In telecommunications, particularly in radio frequency engineering, signal strength refers to the transmitter power output as received by a reference antenna at a distance from the transmitting antenna. High-powered transmissions, such as those used in broadcasting, are expressed in dB-millivolts per metre (dBmV/m). For very low-power systems, such as mobile phones, signal strength is usually expressed in dB-microvolts per metre (dBμV/m) or in decibels above a reference level of one milliwatt (dBm). In broadcasting terminology, 1 mV/m is 1000 μV/m or 60 dBμ (often written dBu). ;Examples: *100 dBμ or 100 mV/m: blanketing interference may occur on some receivers *60 dBμ or 1.0 mV/m: frequently considered the edge of a radio station's protected area in North America *40 dBμ or 0.1 mV/m: the minimum strength at which a station can be received with acceptable quality on most receivers Relationship to average radiated power The electric field strength at a specific point ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Optical Fiber
An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means to transmit light between the two ends of the fiber and find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths (data transfer rates) than electrical cables. Fibers are used instead of metal wires because signals travel along them with less loss; in addition, fibers are immune to electromagnetic interference, a problem from which metal wires suffer. Fibers are also used for illumination and imaging, and are often wrapped in bundles so they may be used to carry light into, or images out of confined spaces, as in the case of a fiberscope. Specially designed fibers are also used for a variety of other applications, some of them being fiber optic sensors and fiber lasers. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Index Of Refraction
In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, or refracted, when entering a material. This is described by Snell's law of refraction, , where ''θ''1 and ''θ''2 are the angle of incidence and angle of refraction, respectively, of a ray crossing the interface between two media with refractive indices ''n''1 and ''n''2. The refractive indices also determine the amount of light that is reflected when reaching the interface, as well as the critical angle for total internal reflection, their intensity ( Fresnel's equations) and Brewster's angle. The refractive index can be seen as the factor by which the speed and the wavelength of the radiation are reduced with respect to their vacuum values: the speed of light in a medium is , and similarly the wavelength in that medium is , where ''λ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Direct-buried Cable
Direct-buried cable (DBC) is a kind of communications or transmissions electrical cable which is especially designed to be buried under the ground without any other cover, sheath, or duct to protect it. Most direct-buried cable is built to specific tolerances to heat, moisture, conductivity, and soil acidity. Unlike standard telecommunications and power cables, which have only a thin layer of insulation and a waterproof outer cover, DBC consists of multiple layers of heavy metallic-banded sheathing, reinforced by heavy rubber covers, shock absorbing gel, wrapped thread-fortified waterproof tape, and stiffened by a heavy metal core. DBC is preferable in some areas since it is more resistant to being the focus of lightning discharges. Communications Most cable of this kind is coaxial or bundled fiber-optic cable. In the 20th century much of it was filled cable. Direct-buried cable is cheaper and easier to lay than other kinds of cable that require protection from the earth. Ho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Optical Fiber Cable
A fiber-optic cable, also known as an optical-fiber cable, is an assembly similar to an electrical cable, but containing one or more optical fibers that are used to carry light. The optical fiber elements are typically individually coated with plastic layers and contained in a protective tube suitable for the environment where the cable is used. Different types of cable are used for different applications, for example, long distance telecommunication, or providing a high-speed data connection between different parts of a building. Design Optical fiber consists of a core and a cladding layer, selected for total internal reflection due to the difference in the refractive index between the two. In practical fibers, the cladding is usually coated with a layer of acrylate polymer or polyimide. This coating protects the fiber from damage but does not contribute to its optical waveguide properties. Individual coated fibers (or fibers formed into ribbons or bundles) then have a tough ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Optical Attenuator
An optical attenuator, or fiber optic attenuator, is a device used to reduce the power level of an optical signal, either in free space or in an optical fiber. The basic types of optical attenuators are fixed, step-wise variable, and continuously variable. Applications Optical attenuators are commonly used in fiber optic communications, either to test power level margins by temporarily adding a calibrated amount of signal loss, or installed permanently to properly match transmitter and receiver levels. Sharp bends stress optic fibers and can cause losses. If a received signal is too strong a temporary fix is to wrap the cable around a pencil until the desired level of attenuation is achieved. However, such arrangements are unreliable, since the stressed fiber tends to break over time. Generally, multimode systems do not need attenuators as the multimode sources, rarely have enough power output to saturate receivers. Instead, single-mode systems, especially the long-haul DWDM networ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Optical Fiber Connector
An optical fiber connector joins optical fibers, and enables quicker connection and disconnection than splicing. The connectors mechanically couple and align the cores of fibers so light can pass. Better connectors lose very little light due to reflection or misalignment of the fibers. In all, about 100 different types of fiber optic connectors have been introduced to the market. Application Optical fiber connectors are used to join optical fibers where a connect/disconnect capability is required. Due to the polishing and tuning procedures that may be incorporated into optical connector manufacturing, connectors are often assembled onto optical fiber in a supplier's manufacturing facility. However, the assembly and polishing operations involved can be performed in the field, for example, to terminate long runs at a patch panel. Optical fiber connectors are used in telephone exchanges, for customer premises wiring, and in outside plant applications to connect equipment and f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]