HOME
*



picture info

Gap Gene
A gap gene is a type of gene involved in the development of the segmented embryos of some arthropods. Gap genes are defined by the effect of a mutation in that gene, which causes the loss of contiguous body segments, resembling a gap in the normal body plan. Each gap gene, therefore, is necessary for the development of a section of the organism. Gap genes were first described by Christiane Nüsslein-Volhard and Eric Wieschaus in 1980. They used a genetic screen to identify genes required for embryonic development in the fruit fly ''Drosophila melanogaster''. They found three genes – ''knirps, Krüppel and hunchback'' – where mutations caused deletion of particular stretches of segments. Later work identified more gap genes in the ''Drosophila'' early embryo – ''giant'', ''huckebein'' and ''tailless''. Further gap genes including orthodenticle and buttonhead are required for the development of the ''Drosophila'' head. Once the gap genes had been identified at the molecula ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Drosophila Melanogaster
''Drosophila melanogaster'' is a species of fly (the taxonomic order Diptera) in the family Drosophilidae. The species is often referred to as the fruit fly or lesser fruit fly, or less commonly the " vinegar fly" or "pomace fly". Starting with Charles W. Woodworth's 1901 proposal of the use of this species as a model organism, ''D. melanogaster'' continues to be widely used for biological research in genetics, physiology, microbial pathogenesis, and life history evolution. As of 2017, five Nobel Prizes have been awarded to drosophilists for their work using the insect. ''D. melanogaster'' is typically used in research owing to its rapid life cycle, relatively simple genetics with only four pairs of chromosomes, and large number of offspring per generation. It was originally an African species, with all non-African lineages having a common origin. Its geographic range includes all continents, including islands. ''D. melanogaster'' is a common pest in homes, restaurants, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bicoid
Homeotic protein bicoid is encoded by the ''bcd'' maternal effect gene in ''Drosophilia''. Homeotic protein bicoid concentration gradient patterns the anterior-posterior (A-P) axis during ''Drosophila'' embryogenesis. Bicoid was the first protein demonstrated to act as a morphogen. Although bicoid is important for the development of ''Drosophila'' and other higher dipterans, it is absent from most other insects, where its role is accomplished by other genes. Role in axial patterning ''Bicoid'' mRNA is actively localized to the anterior of the fruit fly egg during oogenesis along microtubules by the motor protein dynein, and retained there through association with cortical actin. Translation of ''bicoid'' is regulated by its 3′ UTR and begins after egg deposition. Diffusion and convection within the syncytium produce an exponential gradient of Bicoid protein within roughly one hour, after which Bicoid nuclear concentrations remain approximately constant through cellulari ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Maternal Effect
A maternal effect is a situation where the phenotype of an organism is determined not only by the environment it experiences and its genotype, but also by the environment and genotype of its mother. In genetics, maternal effects occur when an organism shows the phenotype expected from the genotype of the mother, irrespective of its own genotype, often due to the mother supplying messenger RNA or proteins to the egg. Maternal effects can also be caused by the maternal environment independent of genotype, sometimes controlling the size, sex, or behaviour of the offspring. These adaptive maternal effects lead to phenotypes of offspring that increase their fitness. Further, it introduces the concept of phenotypic plasticity, an important evolutionary concept. It has been proposed that maternal effects are important for the evolution of adaptive responses to environmental heterogeneity. In genetics In genetics, a maternal effect occurs when the phenotype of an organism is determined ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pair-rule Gene
A pair-rule gene is a type of gene involved in the development of the segmented embryos of insects. Pair-rule genes are expressed as a result of differing concentrations of gap gene proteins, which encode transcription factors controlling pair-rule gene expression. Pair-rule genes are defined by the effect of a mutation in that gene, which causes the loss of the normal developmental pattern in alternating segments. Pair-rule genes were first described by Christiane Nüsslein-Volhard and Eric Wieschaus in 1980. They used a genetic screen to identify genes required for embryonic development in the fruit fly ''Drosophila melanogaster''. In normal unmutated ''Drosophila,'' each segment produces bristles called denticles in a band arranged on the side of the segment closer to the head (the anterior). They found five genes – ''even-skipped, hairy, odd-skipped, paired'' and ''runt'' – where mutations caused the deletion of a particular region of every alternate segment. For exa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transcription Factors
In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The function of TFs is to regulate—turn on and off—genes in order to make sure that they are expressed in the desired cells at the right time and in the right amount throughout the life of the cell and the organism. Groups of TFs function in a coordinated fashion to direct cell division, cell growth, and cell death throughout life; cell migration and organization ( body plan) during embryonic development; and intermittently in response to signals from outside the cell, such as a hormone. There are up to 1600 TFs in the human genome. Transcription factors are members of the proteome as well as regulome. TFs work alone or with other proteins in a complex, by promoting (as an activator), or blocking (as a repressor) the recruitment of RNA ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gene Expression
Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, protein or non-coding RNA, and ultimately affect a phenotype, as the final effect. These products are often proteins, but in non-protein-coding genes such as transfer RNA (tRNA) and small nuclear RNA (snRNA), the product is a functional non-coding RNA. Gene expression is summarized in the central dogma of molecular biology first formulated by Francis Crick in 1958, further developed in his 1970 article, and expanded by the subsequent discoveries of reverse transcription and RNA replication. The process of gene expression is used by all known life— eukaryotes (including multicellular organisms), prokaryotes (bacteria and archaea), and utilized by viruses—to generate the macromolecular machinery for life. In genetics, gene expression is the most fundamental level at which the genotype gives rise to the phenot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Drosophila Embryogenesis
''Drosophila'' embryogenesis, the process by which ''Drosophila'' (fruit fly) embryos form, is a favorite model system for genetics and developmental biology. The study of its embryogenesis unlocked the century-long puzzle of how development was controlled, creating the field of evolutionary developmental biology. The small size, short generation time, and large brood size make it ideal for genetic studies. Transparent embryos facilitate developmental studies. ''Drosophila melanogaster'' was introduced into the field of genetic experiments by Thomas Hunt Morgan in 1909. Life cycle ''Drosophila'' display a holometabolous method of development, meaning that they have three distinct stages of their post-embryonic life cycle, each with a radically different body plan: larva, pupa and finally, adult. The machinery necessary for the function and smooth transition between these three phases develops during embryogenesis. During embryogenesis, the larval stage fly will develop an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Krüppel
Krüppel is a gap gene in ''Drosophila melanogaster'', located on the 2R chromosome, which encodes a zinc finger C2H2 transcription factor. Gap genes work together to establish the anterior-posterior segment patterning of the insect through regulation of the transcription factor encoding pair rule genes. These genes in turn regulate segment polarity genes. ''Krüppel'' means "cripple" in German, named for the crippled appearance of mutant larvae, who have failed to develop proper thoracic and anterior segments in the abdominal region. Mutants can also have abdominal mirror duplications. Human homologs of Krüppel are collectively named ''Krüppel''-like factors, a set of proteins well characterized for their role in carcinogenesis. ''Krüppel'' expression pathway ''Krüppel'' is expressed in the center of the embryo during the cellular blastoderm stage of development. Its expression pattern is restricted to this domain largely through interactions with the maternal effect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Genetic Screen
A genetic screen or mutagenesis screen is an experimental technique used to identify and select individuals who possess a phenotype of interest in a mutagenized population. Hence a genetic screen is a type of phenotypic screen. Genetic screens can provide important information on gene function as well as the molecular events that underlie a biological process or pathway. While genome projects have identified an extensive inventory of genes in many different organisms, genetic screens can provide valuable insight as to how those genes function. Basic screening Forward genetics (or a forward genetic screen) starts with a phenotype and then attempts to identify the causative mutation and thus gene(s) responsible for the phenotype. For instance, the famous screen by Christiane Nüsslein-Volhard and Eric Wieschaus mutagenized fruit flies and then set out to find the genes causing the observed mutant phenotypes. Successful forward genetic screens often require a defined genetic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gene
In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a basic unit of heredity and the molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protein-coding genes and noncoding genes. During gene expression, the DNA is first copied into RNA. The RNA can be directly functional or be the intermediate template for a protein that performs a function. The transmission of genes to an organism's offspring is the basis of the inheritance of phenotypic traits. These genes make up different DNA sequences called genotypes. Genotypes along with environmental and developmental factors determine what the phenotypes will be. Most biological traits are under the influence of polygenes (many different genes) as well as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eric Wieschaus
Eric Francis Wieschaus (born June 8, 1947 in South Bend, Indiana) is an American evolutionary developmental biologist and 1995 Nobel Prize-winner. Early life Born in South Bend, Indiana, he attended John Carroll Catholic High School in Birmingham, Alabama before attending the University of Notre Dame for his undergraduate studies (B.S., biology), and Yale University (Ph.D., biology) for his graduate work. Scientific career In 1978, he moved to his first independent job, at the European Molecular Biology Laboratory in Heidelberg, Germany and moved from Heidelberg to Princeton University in the United States in 1981. Much of his research has focused on embryogenesis in the fruit fly ''Drosophila melanogaster'', specifically in the patterning that occurs in the early ''Drosophila'' embryo. Most of the gene products used by the embryo at these stages are already present in the unfertilized egg and were produced by maternal transcription during oogenesis. A small number of gene ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]