Geometrically Regular
In algebraic geometry, a geometrically regular ring is a Noetherian ring over a field that remains a regular ring after any finite extension of the base field. Geometrically regular schemes are defined in a similar way. In older terminology, points with regular local rings were called simple points, and points with geometrically regular local rings were called absolutely simple points. Over fields that are of characteristic 0, or algebraically closed, or more generally perfect, geometrically regular rings are the same as regular rings. Geometric regularity originated when Claude Chevalley and AndrĂ© Weil pointed out to that, over non-perfect fields, the Jacobian criterion for a simple point of an algebraic variety is not equivalent to the condition that the local ring is regular. A Noetherian local ring containing a field ''k'' is geometrically regular over ''k'' if and only if it is formally smooth over ''k''. Examples gave the following two examples of local rings that a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Noetherian Ring
In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. That is, every increasing sequence I_1\subseteq I_2 \subseteq I_3 \subseteq \cdots of left (or right) ideals has a largest element; that is, there exists an such that: I_=I_=\cdots. Equivalently, a ring is left-Noetherian (resp. right-Noetherian) if every left ideal (resp. right-ideal) is finitely generated. A ring is Noetherian if it is both left- and right-Noetherian. Noetherian rings are fundamental in both commutative and noncommutative ring theory since many rings that are encountered in mathematics are Noetherian (in particular the ring of integers, polynomial rings, and rings of algebraic integers in number fields), and many general theorems on rings rely heavily on Noetherian property (for example, the Laskerâ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Field (algebra)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other results, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Regular Ring
In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let ''A'' be a Noetherian local ring with maximal ideal m, and suppose ''a''1, ..., ''a''''n'' is a minimal set of generators of m. Then by Krull's principal ideal theorem ''n'' ≥ dim ''A'', and ''A'' is defined to be regular if ''n'' = dim ''A''. The appellation ''regular'' is justified by the geometric meaning. A point ''x'' on an algebraic variety ''X'' is nonsingular if and only if the local ring \mathcal_ of germs at ''x'' is regular. (See also: regular scheme.) Regular local rings are ''not'' related to von Neumann regular rings. For Noetherian local rings, there is the following chain of inclusions: Characterizations There are a number of useful definitions of a regular local ring, one of which is mentioned above. In particular, if A is a Noetherian local ring with maximal idea ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Local Ring
In abstract algebra, more specifically ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebraic number fields examined at a particular place, or prime. Local algebra is the branch of commutative algebra that studies commutative local rings and their modules. In practice, a commutative local ring often arises as the result of the localization of a ring at a prime ideal. The concept of local rings was introduced by Wolfgang Krull in 1938 under the name ''Stellenringe''. The English term ''local ring'' is due to Zariski. Definition and first consequences A ring ''R'' is a local ring if it has any one of the following equivalent properties: * ''R'' has a unique maximal left ideal. * ''R'' has a unique maximal right ideal. * 1 ≠0 and the sum of any two non-units in ''R'' is a non-unit. * 1 ≠0 and if ''x'' is any element of ''R ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Perfect Field
In algebra, a field ''k'' is perfect if any one of the following equivalent conditions holds: * Every irreducible polynomial over ''k'' has distinct roots. * Every irreducible polynomial over ''k'' is separable. * Every finite extension of ''k'' is separable. * Every algebraic extension of ''k'' is separable. * Either ''k'' has characteristic 0, or, when ''k'' has characteristic , every element of ''k'' is a ''p''th power. * Either ''k'' has characteristic 0, or, when ''k'' has characteristic , the Frobenius endomorphism is an automorphism of ''k''. * The separable closure of ''k'' is algebraically closed. * Every reduced commutative ''k''-algebra ''A'' is a separable algebra; i.e., A \otimes_k F is reduced for every field extension ''F''/''k''. (see below) Otherwise, ''k'' is called imperfect. In particular, all fields of characteristic zero and all finite fields are perfect. Perfect fields are significant because Galois theory over these fields becomes simpler, since the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Claude Chevalley
Claude Chevalley (; 11 February 1909 – 28 June 1984) was a French mathematician who made important contributions to number theory, algebraic geometry, class field theory, finite group theory and the theory of algebraic groups. He was a founding member of the Bourbaki group. Life His father, Abel Chevalley, was a French diplomat who, jointly with his wife Marguerite Chevalley nĂ©e Sabatier, wrote ''The Concise Oxford French Dictionary''. Chevalley graduated from the École Normale SupĂ©rieure in 1929, where he studied under Émile Picard. He then spent time at the University of Hamburg, studying under Emil Artin and at the University of Marburg, studying under Helmut Hasse. In Germany, Chevalley discovered Japanese mathematics in the person of Shokichi Iyanaga. Chevalley was awarded a doctorate in 1933 from the University of Paris for a thesis on class field theory. When World War II broke out, Chevalley was at Princeton University. After reporting to the French Embassy, h ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
André Weil
AndrĂ© Weil (; ; 6 May 1906 – 6 August 1998) was a French mathematician, known for his foundational work in number theory and algebraic geometry. He was a founding member and the ''de facto'' early leader of the mathematical Bourbaki group. The philosopher Simone Weil was his sister. The writer Sylvie Weil is his daughter. Life AndrĂ© Weil was born in Paris to agnostic Alsatian Jewish parents who fled the annexation of Alsace-Lorraine by the German Empire after the Franco-Prussian War in 1870–71. Simone Weil, who would later become a famous philosopher, was Weil's younger sister and only sibling. He studied in Paris, Rome and Göttingen and received his doctorate in 1928. While in Germany, Weil befriended Carl Ludwig Siegel. Starting in 1930, he spent two academic years at Aligarh Muslim University in India. Aside from mathematics, Weil held lifelong interests in classical Greek and Latin literature, in Hinduism and Sanskrit literature: he had taught himself Sanskrit in 1 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jacobian Criterion
In mathematics, a Jacobian, named for Carl Gustav Jacob Jacobi, may refer to: *Jacobian matrix and determinant * Jacobian elliptic functions *Jacobian variety *Intermediate Jacobian In mathematics, the intermediate Jacobian of a compact Kähler manifold or Hodge structure is a complex torus that is a common generalization of the Jacobian variety of a curve and the Picard variety and the Albanese variety. It is obtained by ... {{set index Mathematical terminology ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Formally Smooth
In algebraic geometry, a morphism f:X \to S between schemes is said to be smooth if *(i) it is locally of finite presentation *(ii) it is flat, and *(iii) for every geometric point \overline \to S the fiber X_ = X \times_S is regular. (iii) means that each geometric fiber of ''f'' is a nonsingular variety (if it is separated). Thus, intuitively speaking, a smooth morphism gives a flat family of nonsingular varieties. If ''S'' is the spectrum of an algebraically closed field and ''f'' is of finite type, then one recovers the definition of a nonsingular variety. Equivalent definitions There are many equivalent definitions of a smooth morphism. Let f: X \to S be locally of finite presentation. Then the following are equivalent. # ''f'' is smooth. # ''f'' is formally smooth (see below). # ''f'' is flat and the sheaf of relative differentials \Omega_ is locally free of rank equal to the relative dimension of X/S. # For any x \in X, there exists a neighborhood \operatornameB of x and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Regular Scheme
In algebraic geometry, a regular scheme is a locally Noetherian scheme whose local rings are regular everywhere. Every smooth scheme is regular, and every regular scheme of finite type over a perfect field is smooth.. For an example of a regular scheme that is not smooth, see Geometrically regular ring#Examples. See also *Étale morphism *Dimension of an algebraic variety *Glossary of scheme theory This is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. ... * Smooth completion References Algebraic geometry Scheme theory {{algebraic-geometry-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transactions Of The American Mathematical Society
The ''Transactions of the American Mathematical Society'' is a monthly peer-reviewed scientific journal of mathematics published by the American Mathematical Society. It was established in 1900. As a requirement, all articles must be more than 15 printed pages. See also * ''Bulletin of the American Mathematical Society'' * '' Journal of the American Mathematical Society'' * ''Memoirs of the American Mathematical Society'' * ''Notices of the American Mathematical Society'' * ''Proceedings of the American Mathematical Society'' External links * ''Transactions of the American Mathematical Society''on JSTOR JSTOR (; short for ''Journal Storage'') is a digital library founded in 1995 in New York City. Originally containing digitized back issues of academic journals, it now encompasses books and other primary sources as well as current issues of j ... American Mathematical Society academic journals Mathematics journals Publications established in 1900 {{math-journal-st ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |