HOME
*





Gem-associated Protein 4
Gem-associated protein 4 is a protein that in humans is encoded by the ''GEMIN4'' gene. Function The product of this gene is part of the SMN protein complex localized to the cytoplasm, nucleoli, and to discrete nuclear bodies called Gemini bodies (gems). The complex functions in spliceosomal snRNP assembly in the cytoplasm, and regenerates spliceosomes required for pre-mRNA splicing in the nucleus. The encoded protein directly interacts with a DEAD box protein and several spliceosome core proteins. Alternatively spliced transcript variants have been described, but their biological validity has not been determined. Interactions GEMIN4 has been shown to interact with: * DDX20, * EIF2C2, * LGALS1 and * SMN1 Survival of motor neuron 1 (''SMN1''), also known as component of gems 1 or ''GEMIN1'', is a gene that encodes the SMN protein in humans. Gene ''SMN1'' is the telomeric copy of the gene encoding the SMN protein; the centromeric copy is term .... References ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific 3D structure that determines its activity. A linear chain of amino acid residues is called a polypeptide. A protein contains at least one long polypeptide. Short polypeptides, containing less than 20–30 residues, are rarely considered to be proteins and are commonly called peptides. The individual amino acid residues are bonded together by peptide bonds and adjacent amino acid residues. The sequence of amino acid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gene
In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a basic unit of heredity and the molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protein-coding genes and noncoding genes. During gene expression, the DNA is first copied into RNA. The RNA can be directly functional or be the intermediate template for a protein that performs a function. The transmission of genes to an organism's offspring is the basis of the inheritance of phenotypic traits. These genes make up different DNA sequences called genotypes. Genotypes along with environmental and developmental factors determine what the phenotypes will be. Most biological traits are under the influence of polygenes (many different genes) as well as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Survival Of Motor Neuron Protein
Survival of motor neuron or survival motor neuron (SMN) is a protein that in humans is encoded by the ''SMN1'' and ''SMN2'' genes. SMN is found in the cytoplasm of all animal cells and also in the nuclear gems. It functions in transcriptional regulation, telomerase regeneration and cellular trafficking. SMN deficiency, primarily due to mutations in ''SMN1'', results in widespread splicing defects, especially in spinal motor neurons, and is one cause of spinal muscular atrophy. Research also showed a possible role of SMN in neuronal migration and/or differentiation. Function The SMN protein contains GEMIN2-binding, Tudor and YG-Box domains. It localizes to both the cytoplasm and the nucleus. Within the nucleus, the protein localizes to subnuclear bodies called gems which are found near coiled bodies containing high concentrations of small ribonucleoproteins (snRNPs). This protein forms heteromeric complexes with proteins such as GEMIN2 and GEMIN4, and also interacts with s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cell Nucleus
The cell nucleus (pl. nuclei; from Latin or , meaning ''kernel'' or ''seed'') is a membrane-bound organelle found in eukaryotic cells. Eukaryotic cells usually have a single nucleus, but a few cell types, such as mammalian red blood cells, have no nuclei, and a few others including osteoclasts have many. The main structures making up the nucleus are the nuclear envelope, a double membrane that encloses the entire organelle and isolates its contents from the cellular cytoplasm; and the nuclear matrix, a network within the nucleus that adds mechanical support. The cell nucleus contains nearly all of the cell's genome. Nuclear DNA is often organized into multiple chromosomes – long stands of DNA dotted with various proteins, such as histones, that protect and organize the DNA. The genes within these chromosomes are structured in such a way to promote cell function. The nucleus maintains the integrity of genes and controls the activities of the cell by regulating gene ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spliceosome
A spliceosome is a large ribonucleoprotein (RNP) complex found primarily within the nucleus of eukaryotic cells. The spliceosome is assembled from small nuclear RNAs ( snRNA) and numerous proteins. Small nuclear RNA (snRNA) molecules bind to specific proteins to form a small nuclear ribonucleoprotein complex (snRNP, pronounced “snurps”), which in turn combines with other snRNPs to form a large ribonucleoprotein complex called a spliceosome. The spliceosome removes introns from a transcribed pre-mRNA, a type of primary transcript. This process is generally referred to as splicing. An analogy is a film editor, who selectively cuts out irrelevant or incorrect material (equivalent to the introns) from the initial film and sends the cleaned-up version to the director for the final cut. However, sometimes the RNA within the intron acts as a ribozyme, splicing itself without the use of a spliceosome or protein enzymes. History In 1977, work by the Sharp and Roberts labs reveal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SnRNP
snRNPs (pronounced "snurps"), or small nuclear ribonucleoproteins, are RNA-protein complexes that combine with unmodified pre-mRNA and various other proteins to form a spliceosome, a large RNA-protein molecular complex upon which splicing of pre-mRNA occurs. The action of snRNPs is essential to the removal of introns from pre-mRNA, a critical aspect of post-transcriptional modification of RNA, occurring only in the nucleus of eukaryotic cells. Additionally, '' U7 snRNP'' is not involved in splicing at all, as U7 snRNP is responsible for processing the 3′ stem-loop of histone pre-mRNA. The two essential components of snRNPs are protein molecules and RNA. The RNA found within each snRNP particle is known as ''small nuclear RNA'', or snRNA, and is usually about 150 nucleotides in length. The snRNA component of the snRNP gives specificity to individual introns by " recognizing" the sequences of critical splicing signals at the 5' and 3' ends and branch site of introns. The snRN ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

DEAD Box
Death is the irreversible cessation of all biological functions that sustain an organism. For organisms with a brain, death can also be defined as the irreversible cessation of functioning of the whole brain, including brainstem, and brain death is sometimes used as a legal definition of death. The remains of a former organism normally begin to decompose shortly after death. Death is an inevitable process that eventually occurs in almost all organisms. Death is generally applied to whole organisms; the similar process seen in individual components of an organism, such as cells or tissues, is necrosis. Something that is not considered an organism, such as a virus, can be physically destroyed but is not said to die. As of the early 21st century, over 150,000 humans die each day, with ageing being by far the most common cause of death. Many cultures and religions have the idea of an afterlife, and also may hold the idea of judgement of good and bad deeds in one's life (heaven, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




DDX20
Probable ATP-dependent RNA helicase DDX20, also known as DEAD-box helicase 20 and gem-associated protein 3 (GEMIN3), is an enzyme that in humans is encoded by the ''DDX20'' gene. Function DEAD box proteins, characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), are putative RNA helicases. They are implicated in a number of cellular processes involving alteration of RNA secondary structure such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. Based on their distribution patterns, some members of this family are believed to be involved in embryogenesis, spermatogenesis, and cellular growth and division. This gene encodes a DEAD box protein, which has an ATPase activity and is a component of the survival of motor neuron (SMN) complex. SMN is the spinal muscular atrophy gene product, and may play a catalytic role in the function of the SMN complex on RNPs. Clinical significance Previous research has revealed that DDX20 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Juri Rappsilber
Juri Rappsilber (born 1971) is a German chemist in the area of mass spectrometry and proteomics. Career Rappsilber studied chemistry at the Technical University of Berlin, University of Strathclyde, and with Tom Rapoport, Harvard Medical School. In 2001, he earned his Ph.D. in Proteomics jointly from EMBL Heidelberg and the Goethe University Frankfurt working in the laboratory of Matthias Mann on the mass spectrometric analysis of protein complexes, externally supervised by Michael Karas. He followed Mann to the University of Southern Denmark and completed a postdoctoral fellowship before starting his independent career at IFOM - FIRC Institute for Molecular Oncology, Milan in 2003. In 2006, he joined the Wellcome Trust Centre for Cell Biology in the Institute of Cell Biology at the University of Edinburgh. In 2009, he became a senior research fellow of the Wellcome Trust, in 2010 he was appointed Professor of Proteomics in Edinburgh. Since 2011, he has been Full Professor a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


EIF2C2
Protein argonaute-2 is a protein that in humans is encoded by the ''EIF2C2'' gene. This gene encodes a member of the Argonaute family of proteins which play a role in RNA interference. The encoded protein is highly basic, and contains a PAZ domain and a PIWI domain. It may interact with Dicer1 and play a role in short-interfering-RNA-mediated gene silencing. Interactions EIF2C2 has been shown to interact with * DDX20, * DICER1, * FMRP, FXR1P, FXR2P, and * TNRC6B Trinucleotide repeat-containing gene 6B protein is a protein that in humans is encoded by the ''TNRC6B'' gene. Interactions TNRC6B has been shown to interact with EIF2C2. It is also known to associate with argonaute proteins and has been shown .... References Further reading * * * * * * * * * * * * * * * * * RNA interference {{gene-8-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


LGALS1
Galectin-1 is a protein that in humans is encoded by the ''LGALS1'' gene. Gene and protein LGALS1 contains four exons. The galectin-1 protein is 135 amino acids in length and highly conserved across species. It can be found in the nucleus, the cytoplasm, the cell surface and in the extracellular space. Galectins in general lack a traditional signal sequence, but are still secreted across the plasma membrane. This non-traditional secretion requires a functional glycan binding site. Galectin 1 contains a single carbohydrate recognition domain through which it can bind glycans both as a monomer and as a homodimer. Dimers are non-covalently bound and will spontaneously disassociate in low concentration. Galectin 1 does not bind glycans when oxidized. Having 6 cysteine residues, the oxidation state has a significant effect on the protein structure. The oxidized form is reported to have alternative functions not involving carbohydrate binding. Function The galectins are a family ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]