Gauged Supergravity
   HOME
*





Gauged Supergravity
Gauged supergravity is a supergravity theory in which some R-symmetry is gauged such that the gravitinos ( superpartners of the graviton) are charged with respect to the gauge fields. Consistency of the supersymmetry transformation often requires the presence of the potential for the scalar field In mathematics and physics, a scalar field is a function (mathematics), function associating a single number to every point (geometry), point in a space (mathematics), space – possibly physical space. The scalar may either be a pure Scalar ( ...s of the theory, or the cosmological constant if the theory contains no scalar degree of freedom. The gauged supergravity often has the anti-de Sitter space as a supersymmetric vacuum. Notable exception is a six-dimensional ''N''=(1,0) gauged supergravity. "Gauged supergravity" in this sense should be contrasted with Yang–Mills–Einstein supergravity in which some other would-be global symmetries of the theory are gauged and fiel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supergravity
In theoretical physics, supergravity (supergravity theory; SUGRA for short) is a modern field theory that combines the principles of supersymmetry and general relativity; this is in contrast to non-gravitational supersymmetric theories such as the Minimal Supersymmetric Standard Model. Supergravity is the gauge theory of local supersymmetry. Since the supersymmetry (SUSY) generators form together with the Poincaré algebra a superalgebra, called the super-Poincaré algebra, supersymmetry as a gauge theory makes gravity arise in a natural way. Gravitons Like any field theory of gravity, a supergravity theory contains a spin-2 field whose quantum is the graviton. Supersymmetry requires the graviton field to have a superpartner. This field has spin 3/2 and its quantum is the gravitino. The number of gravitino fields is equal to the number of supersymmetries. History Gauge supersymmetry The first theory of local supersymmetry was proposed by Dick Arnowitt and Pran Nath in 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


R-symmetry
In theoretical physics, the R-symmetry is the symmetry transforming different supercharges in a theory with supersymmetry into each other. In the simplest case of the ''N''=1 supersymmetry, such an R-symmetry is isomorphic to a global U(1) group or its discrete subgroup (for the Z2 subgroup it is called R-parity). For extended supersymmetry, the R-symmetry group becomes a global U(N) non-abelian group In mathematics, and specifically in group theory, a non-abelian group, sometimes called a non-commutative group, is a group (''G'', ∗) in which there exists at least one pair of elements ''a'' and ''b'' of ''G'', such that ''a'' ∗ ' .... In a model that is classically invariant under both ''N''=1 supersymmetry and conformal transformations, the closure of the superconformal algebra (at least on-shell) needs the introduction of a further bosonic generator that is associated to the R-symmetry. References * Supersymmetry {{quantum-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gravitino
In supergravity theories combining general relativity and supersymmetry, the gravitino () is the gauge fermion supersymmetric partner of the hypothesized graviton. It has been suggested as a candidate for dark matter. If it exists, it is a fermion of spin and therefore obeys the Rarita–Schwinger equation. The gravitino field is conventionally written as ''ψμα'' with a four-vector index and a spinor index. For one would get negative norm modes, as with every massless particle of spin 1 or higher. These modes are unphysical, and for consistency there must be a gauge symmetry which cancels these modes: , where ''εα''(''x'') is a spinor function of spacetime. This gauge symmetry is a local supersymmetry transformation, and the resulting theory is supergravity. Thus the gravitino is the fermion mediating supergravity interactions, just as the photon is mediating electromagnetism, and the graviton is presumably mediating gravitation. Whenever supersymmetry is broken in su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Superpartner
In particle physics, a superpartner (also sparticle) is a class of hypothetical elementary particles predicted by supersymmetry, which, among other applications, is one of the well-studied ways to extend the standard model of high-energy physics. When considering extensions of the Standard Model, the ''s-'' prefix from ''sparticle'' is used to form names of superpartners of the Standard Model fermions (sfermions),Alexander I. Studenikin (ed.), ''Particle Physics in Laboratory, Space and Universe'', World Scientific, 2005, p. 327. e.g. the stop squark. The superpartners of Standard Model bosons have an ''-ino'' (bosinos) appended to their name, e.g. gluino, the set of all gauge superpartners are called the gauginos. Theoretical predictions According to the supersymmetry theory, each fermion should have a partner boson, the fermion's superpartner, and each boson should have a partner fermion. Exact ''unbroken'' supersymmetry would predict that a particle and its superpartners would ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graviton
In theories of quantum gravity, the graviton is the hypothetical quantum of gravity, an elementary particle that mediates the force of gravitational interaction. There is no complete quantum field theory of gravitons due to an outstanding mathematical problem with renormalization in general relativity. In string theory, believed by some to be a consistent theory of quantum gravity, the graviton is a massless state of a fundamental string. If it exists, the graviton is expected to be massless because the gravitational force has a very long range, and appears to propagate at the speed of light. The graviton must be a spin-2 boson because the source of gravitation is the stress–energy tensor, a second-order tensor (compared with electromagnetism's spin-1 photon, the source of which is the four-current, a first-order tensor). Additionally, it can be shown that any massless spin-2 field would give rise to a force indistinguishable from gravitation, because a massless spin-2 field ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gauge Field
In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie groups). The term ''gauge'' refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian of a physical system. The transformations between possible gauges, called ''gauge transformations'', form a Lie group—referred to as the ''symmetry group'' or the ''gauge group'' of the theory. Associated with any Lie group is the Lie algebra of group generators. For each group generator there necessarily arises a corresponding field (usually a vector field) called the ''gauge field''. Gauge fields are included in the Lagrangian to ensure its invariance under the local group transformations (called ''gauge invariance''). When such a theory is quantized, the quanta of the gauge fields are called ''gauge bosons' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supersymmetry
In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories exist. Supersymmetry is a spacetime symmetry between two basic classes of particles: bosons, which have an integer-valued spin and follow Bose–Einstein statistics, and fermions, which have a half-integer-valued spin and follow Fermi–Dirac statistics. In supersymmetry, each particle from one class would have an associated particle in the other, known as its superpartner, the spin of which differs by a half-integer. For example, if the electron exists in a supersymmetric theory, then there would be a particle called a ''"selectron"'' (superpartner electron), a bosonic partner of the electron. In the simplest supersymmetry theories, with perfectly " unbroken" supersymmetry, each pair of superpartners would share the same mass and intern ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scalar Field
In mathematics and physics, a scalar field is a function (mathematics), function associating a single number to every point (geometry), point in a space (mathematics), space – possibly physical space. The scalar may either be a pure Scalar (mathematics), mathematical number (dimensionless) or a scalar (physics), scalar physical quantity (with unit of measurement, units). In a physical context, scalar fields are required to be independent of the choice of reference frame, meaning that any two observers using the same units will agree on the value of the scalar field at the same absolute point in space (or spacetime) regardless of their respective points of origin. Examples used in physics include the temperature distribution throughout space, the pressure distribution in a fluid, and spin-zero quantum fields, such as the Higgs field. These fields are the subject of scalar field theory. Definition Mathematically, a scalar field on a Region (mathematical analysis), region ''U ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cosmological Constant
In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant, is the constant coefficient of a term that Albert Einstein temporarily added to his field equations of general relativity. He later removed it. Much later it was revived and reinterpreted as the energy density of space, or vacuum energy, that arises in quantum mechanics. It is closely associated with the concept of dark energy. Einstein originally introduced the constant in 1917 to counterbalance the effect of gravity and achieve a static universe, a notion that was the accepted view at the time. Einstein's cosmological constant was abandoned after Edwin Hubble's confirmation that the universe was expanding. From the 1930s until the late 1990s, most physicists agreed with Einstein's choice of setting the cosmological constant to zero. That changed with the discovery in 1998 that the expansion of the universe is accelerating, im ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Anti-de Sitter Space
In mathematics and physics, ''n''-dimensional anti-de Sitter space (AdS''n'') is a maximally symmetric Lorentzian manifold with constant negative scalar curvature. Anti-de Sitter space and de Sitter space are named after Willem de Sitter (1872–1934), professor of astronomy at Leiden University and director of the Leiden Observatory. Willem de Sitter and Albert Einstein worked together closely in Leiden in the 1920s on the spacetime structure of the universe. Manifolds of constant curvature are most familiar in the case of two dimensions, where the elliptic plane or surface of a sphere is a surface of constant positive curvature, a flat (i.e., Euclidean) plane is a surface of constant zero curvature, and a hyperbolic plane is a surface of constant negative curvature. Einstein's general theory of relativity places space and time on equal footing, so that one considers the geometry of a unified spacetime instead of considering space and time separately. The cases of spacetime o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Yang–Mills–Einstein Supergravity
Higher-dimensional supergravity is the supersymmetric generalization of general relativity in higher dimensions. Supergravity can be formulated in any number of dimensions up to eleven. This article focuses upon supergravity (SUGRA) in greater than four dimensions. Supermultiplets Fields related by supersymmetry transformations form a supermultiplet; the one that contains a graviton is called the supergravity multiplet. The name of a supergravity theory generally includes the number of dimensions of spacetime that it inhabits, and also the number \mathcal of gravitinos that it has. Sometimes one also includes the choices of supermultiplets in the name of theory. For example, an \mathcal=2, (9 + 1)-dimensional supergravity enjoys 9 spatial dimensions, one time and 2 gravitinos. While the field content of different supergravity theories varies considerably, all supergravity theories contain at least one gravitino and they all contain a single graviton. Thus every ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Velo–Zwanziger Problem
In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie groups). The term ''gauge'' refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian of a physical system. The transformations between possible gauges, called ''gauge transformations'', form a Lie group—referred to as the ''symmetry group'' or the ''gauge group'' of the theory. Associated with any Lie group is the Lie algebra of group generators. For each group generator there necessarily arises a corresponding field (usually a vector field) called the ''gauge field''. Gauge fields are included in the Lagrangian to ensure its invariance under the local group transformations (called ''gauge invariance''). When such a theory is quantized, the quanta of the gauge fields are called ''gauge bosons' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]